AS/NZS 61009.1:2015

Australian/New Zealand Standard

Residual current operated circuit-breakers with integral overcurrent protection for household and similar uses (RCBOs)

Part 1: General rules

Superseding AS/NZS 61009.1:2011
This joint Australian/New Zealand standard was prepared by joint Technical Committee EL-004, Electrical Accessories. It was approved on behalf of the Council of Standards Australia on 12 February 2015 and on behalf of the Council of Standards New Zealand on 10 February 2015.

This standard was published on 23 March 2015.

The following are represented on Committee EL-004:
- Australian Chamber of Commerce and Industry
- Australian Industry Group
- Consumer Electronics Suppliers Association
- Consumers Federation of Australia
- Electrical Compliance Testing Association
- Electrical Regulatory Authorities Council
- Engineers Australia
- International Accreditation New Zealand
- Ministry of Business, Innovation and Employment, New Zealand
- New Zealand Manufacturers and Exporters Association
- NSW Office of Fair Trading
- Plastics Industry Pipe Association of Australia

Keeping standards up to date

Standards are living documents which reflect progress in science, technology, and systems. To maintain their currency, all standards are periodically reviewed, and new editions are published. Between editions, amendments may be issued. Standards may also be withdrawn. It is important that readers assure themselves they are using a current standard, which should include any amendments which may have been published since the standard was purchased.

Detailed information about joint Australian/New Zealand standards can be found by visiting the standards webshop in Australia at www.saiglobal.com.au or Standards New Zealand’s website at www.standards.co.nz.

Alternatively, Standards Australia publishes an annual printed catalogue with full details of all current standards. For more frequent listings or notification of revisions, amendments, and withdrawals, Standards Australia and Standards New Zealand offer a number of update options. For information about these services, users should contact their respective national standards organisation.

We also welcome suggestions for improvement in our standards, and especially encourage readers to notify us immediately of any apparent inaccuracies or ambiguities. Please address your comments to the Chief Executive of either Standards Australia or Standards New Zealand at the address shown on the title page.

This standard was issued in draft form for comment as DR AS/NZS 61009.1:2014.
Residual current operated circuit-breakers with integral overcurrent protection for household and similar uses (RCBOs)

Part 1: General rules

Originated in Australia as part of AS C111—1938.
Originated in New Zealand as AS/NZS 61009.1:1999.
Previous edition 2011.
PREFACE

This Standard was prepared by the Joint Standards Australia/Standards New Zealand Committee EL-004, Electrical Accessories, to supersede AS/NZS 61009.1:2011, Residual current operated circuit-breakers with integral overcurrent protection for household and similar uses (RCBOs), Part 1: General rules (IEC 61009-1, Ed.3.0 (2010) MOD).

The objective of this Standard is to provide Australian and New Zealand electrical industries with requirements for residual current operated circuit-breakers with integral overcurrent protection functionally independent of, or functionally dependent on, line voltage for household and similar uses.

This Standard is an adoption with national modifications. It has been reproduced from IEC 61009-1, Ed. 3.2 (2013), Residual current operated circuit-breakers with integral overcurrent protection for household and similar uses (RCBOs), Part 1: General rules, which incorporates Amendment 1 (2012) and Amendment 2 (2013) and has been varied as indicated to take account of Australian/New Zealand conditions. The variations are specified in Appendix ZZ.

The variations described in Appendix ZZ form the Australian and New Zealand variations for the purposes of the CB scheme for recognition of testing to standards for safety of electrical equipment (the CB Scheme).

This Standard will exist in parallel with AS/NZS 3190, Approval and test specification—Residual current devices (current-operated earth-leakage devices), and AS/NZS 3111, Approval and test specification—Miniature overcurrent circuit-breakers, and any revisions thereof. Both this Standard and AS/NZS 3190, in conjunction with AS/NZS 3111, are acceptable for RCBOs. PRCDs are acceptable only if they comply with AS/NZS 3190.

The essential safety requirements in AS/NZS 3820, Essential safety requirements for electrical equipment, that could be applicable to RCBOs are covered by this Standard.

This Standard is structured as follows:

(a) Preface.

(b) IEC 61009-1, Ed. 3.2 (2013) (unedited from the contents page to the final clause of the source document).

(c) Appendix ZZ—(Australian/New Zealand) variations to the source document.

The variations listed in Appendix ZZ address issues including the following:

(i) Verification of the correct operation in case of sudden appearance of residual currents at specified currents between 5 \(I_{\Delta n} \) and 500 A.

(ii) Routine tests for overcurrent operation.

(iii) Type 1 RCBO additional requirements.

(iv) Add verification of the test device current.

As this Standard is reproduced from an International Standard, the following applies:

(A) In the source text ‘this International Standard’ should read ‘this Australian/New Zealand Standard’.

(B) A full point substitutes for a comma when referring to a decimal marker.
References to International Standards should be replaced by references to Australian or Australian/New Zealand Standards, as follows:

<table>
<thead>
<tr>
<th>Reference to International Standard</th>
<th>Australian/New Zealand Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC</td>
<td></td>
</tr>
<tr>
<td>60060</td>
<td>AS</td>
</tr>
<tr>
<td>60060-1</td>
<td>1931</td>
</tr>
<tr>
<td>60060-2</td>
<td>1931.1</td>
</tr>
<tr>
<td>60068</td>
<td>60068</td>
</tr>
<tr>
<td>60068-3-4</td>
<td>60068.3.4</td>
</tr>
<tr>
<td>60417</td>
<td>60417</td>
</tr>
<tr>
<td>60417-1</td>
<td>60417.1</td>
</tr>
<tr>
<td>60529</td>
<td>60529</td>
</tr>
<tr>
<td>IEC</td>
<td>AS/NZS</td>
</tr>
<tr>
<td>60695</td>
<td>60695</td>
</tr>
<tr>
<td>60695-2-10</td>
<td>60695.2.10</td>
</tr>
<tr>
<td>60695-2-11</td>
<td>60695.2.11</td>
</tr>
<tr>
<td>60898</td>
<td>60898</td>
</tr>
<tr>
<td>60898-1</td>
<td>60898.1</td>
</tr>
<tr>
<td>CISPR</td>
<td>AS/NZS CISPR</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>14-1</td>
<td>14.1</td>
</tr>
</tbody>
</table>

Only normative references that have been adopted as Australian or Australian/New Zealand Standards have been listed.

The terms ‘normative’ and ‘informative’ have been used in this Standard to define the application of the annex to which they apply. A ‘normative’ annex is an integral part of a Standard, whereas an ‘informative’ annex is only for information and guidance.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Scope</td>
<td>12</td>
</tr>
<tr>
<td>2 Normative references</td>
<td>13</td>
</tr>
<tr>
<td>3 Terms and definitions</td>
<td>15</td>
</tr>
<tr>
<td>3.1 Definitions relating to currents flowing from live parts to earth</td>
<td>15</td>
</tr>
<tr>
<td>3.2 Definitions relating to the energization of a residual current circuit-breaker</td>
<td>15</td>
</tr>
<tr>
<td>3.3 Definitions relating to the operation and functions of residual current circuit-breakers</td>
<td>16</td>
</tr>
<tr>
<td>3.4 Definitions relating to values and ranges of energizing quantities</td>
<td>18</td>
</tr>
<tr>
<td>3.5 Definitions relating to values and ranges of influencing quantities</td>
<td>23</td>
</tr>
<tr>
<td>3.6 Definitions relating to terminals</td>
<td>23</td>
</tr>
<tr>
<td>3.7 Definitions relating to conditions of operation</td>
<td>25</td>
</tr>
<tr>
<td>3.8 Definitions relating to constructional elements</td>
<td>26</td>
</tr>
<tr>
<td>3.9 Definitions relating to tests</td>
<td>27</td>
</tr>
<tr>
<td>3.10 Definitions relating to insulation coordination</td>
<td>27</td>
</tr>
<tr>
<td>4 Classification</td>
<td>29</td>
</tr>
<tr>
<td>4.1 According to the method of operation</td>
<td>29</td>
</tr>
<tr>
<td>4.1.1 RCBO functionally independent of line voltage (see 3.3.8)</td>
<td>29</td>
</tr>
<tr>
<td>4.1.2 RCBO functionally dependent on line voltage (see 3.3.9)</td>
<td>29</td>
</tr>
<tr>
<td>4.2 According to the type of installation</td>
<td>29</td>
</tr>
<tr>
<td>4.3 According to the number of poles and current paths</td>
<td>30</td>
</tr>
<tr>
<td>4.4 According to the possibility of adjusting the residual operating current</td>
<td>30</td>
</tr>
<tr>
<td>4.5 According to resistance to unwanted tripping due to voltage surges</td>
<td>30</td>
</tr>
<tr>
<td>4.6 According to behaviour in presence of d.c. components</td>
<td>30</td>
</tr>
<tr>
<td>4.7 According to time-delay (in presence of a residual current)</td>
<td>30</td>
</tr>
<tr>
<td>4.8 According to the protection against external influences</td>
<td>30</td>
</tr>
<tr>
<td>4.9 According to the method of mounting</td>
<td>30</td>
</tr>
<tr>
<td>4.10 According to the method of connection</td>
<td>31</td>
</tr>
<tr>
<td>4.11 According to the instantaneous tripping current (see 3.4.18)</td>
<td>31</td>
</tr>
<tr>
<td>4.12 According to the PIt characteristic</td>
<td>31</td>
</tr>
<tr>
<td>4.13 According to the type of terminals</td>
<td>31</td>
</tr>
<tr>
<td>5 Characteristics of RCBOs</td>
<td>31</td>
</tr>
<tr>
<td>5.1 Summary of characteristics</td>
<td>31</td>
</tr>
<tr>
<td>5.2 Rated quantities and other characteristics</td>
<td>32</td>
</tr>
<tr>
<td>5.2.1 Rated voltage</td>
<td>32</td>
</tr>
<tr>
<td>5.2.2 Rated current (I_n)</td>
<td>32</td>
</tr>
<tr>
<td>5.2.3 Rated residual operating current ($I_{\Delta n}$)</td>
<td>32</td>
</tr>
<tr>
<td>5.2.4 Rated residual non-operating current ($I_{\Delta no}$)</td>
<td>32</td>
</tr>
<tr>
<td>5.2.5 Rated frequency</td>
<td>33</td>
</tr>
<tr>
<td>5.2.6 Rated short-circuit capacity (I_{cn})</td>
<td>33</td>
</tr>
<tr>
<td>5.2.7 Rated residual making and breaking capacity ($I_{\Delta m}$)</td>
<td>33</td>
</tr>
<tr>
<td>5.2.8 RCBO type S</td>
<td>33</td>
</tr>
<tr>
<td>5.2.9 Operating characteristics in case of residual currents with d.c. components</td>
<td>33</td>
</tr>
<tr>
<td>5.3 Standard and preferred values</td>
<td>33</td>
</tr>
</tbody>
</table>
5.3.1 Preferred values of rated voltage \((U_n) \) .. 33
5.3.2 Preferred values of rated current \((I_n) \) .. 34
5.3.3 Standard values of rated residual operating current \((I_{\Delta n}) \) 34
5.3.4 Standard value of residual non-operating current \((I_{\Delta no}) \) 34
5.3.5 Standard values of rated frequency ... 34
5.3.6 Values of rated short-circuit capacity ... 34
5.3.7 Minimum value of the rated residual making and breaking capacity
\((I_{\Delta m}) \) ... 35
5.3.8 Limiting values of break time and non-actuating time for RCBO of
type AC and A .. 35
5.3.9 Standard ranges of overcurrent instantaneous tripping 36
5.3.10 Standard values of rated impulse withstand voltage \((U_{imp}) \) 36

6 Marking and other product information .. 37

7 Standard conditions for operation in service and for installation 39
 7.1 Standard conditions .. 39
 7.2 Conditions of installation .. 40
 7.3 Pollution degree .. 40

8 Requirements for construction and operation .. 40
 8.1 Mechanical design .. 40
 8.1.1 General .. 40
 8.1.2 Mechanism .. 41
 8.1.3 Clearances and creepage distances (see also Annex B) 42
 8.1.4 Screws, current-carrying parts and connections 45
 8.1.5 Terminals for external conductors .. 46
 8.1.6 Non-interchangeability .. 48
 8.2 Protection against electric shock ... 48
 8.3 Dielectric properties and isolating capability ... 49
 8.4 Temperature-rise ... 49
 8.4.1 Temperature-rise limits .. 49
 8.4.2 Ambient air temperature ... 50
 8.5 Operating characteristics .. 50
 8.5.1 Under residual current conditions ... 50
 8.5.2 Under overcurrent conditions ... 50
 8.6 Mechanical and electrical endurance ... 52
 8.7 Performance at short-circuit currents ... 52
 8.8 Resistance to mechanical shock and impact .. 52
 8.9 Resistance to heat .. 52
 8.10 Resistance to abnormal heat and to fire ... 52
 8.11 Test device .. 52
 8.12 Requirements for RCBOs functionally dependent on line voltage 53
 8.13 Void ... 53
 8.14 Behaviour of RCBOs in case of current surges caused by impulse voltages 53
 8.15 Behaviour of RCBOs in case of earth fault currents comprising a d.c.
 component .. 53
 8.16 Reliability .. 53
 8.17 Electromagnetic compatibility (EMC) ... 54
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Tests</td>
</tr>
<tr>
<td>9.1</td>
<td>General</td>
</tr>
<tr>
<td>9.2</td>
<td>Test conditions</td>
</tr>
<tr>
<td>9.3</td>
<td>Test of indelibility of marking</td>
</tr>
<tr>
<td>9.4</td>
<td>Test of reliability of screws, current-carrying parts and connections</td>
</tr>
<tr>
<td>9.5</td>
<td>Test of reliability of screw-type terminals for external copper conductors</td>
</tr>
<tr>
<td>9.6</td>
<td>Verification of protection against electric shock</td>
</tr>
<tr>
<td>9.7</td>
<td>Test of dielectric properties</td>
</tr>
<tr>
<td>9.7.1</td>
<td>Resistance to humidity</td>
</tr>
<tr>
<td>9.7.2</td>
<td>Insulation resistance of the main circuit</td>
</tr>
<tr>
<td>9.7.3</td>
<td>Dielectric strength of the main circuit</td>
</tr>
<tr>
<td>9.7.4</td>
<td>Insulation resistance and dielectric strength of auxiliary circuits</td>
</tr>
<tr>
<td>9.7.5</td>
<td>Secondary circuit of detection transformers</td>
</tr>
<tr>
<td>9.7.6</td>
<td>Capability of control circuits connected to the main circuit withstanding high d.c. voltages due to insulation measurements</td>
</tr>
<tr>
<td>9.7.7</td>
<td>Verification of impulse withstand voltages (across clearances and across solid insulation) and of leakage current across open contacts</td>
</tr>
<tr>
<td>9.8</td>
<td>Test of temperature-rise</td>
</tr>
<tr>
<td>9.8.1</td>
<td>Ambient air temperature</td>
</tr>
<tr>
<td>9.8.2</td>
<td>Test procedure</td>
</tr>
<tr>
<td>9.8.3</td>
<td>Measurement of the temperature of parts</td>
</tr>
<tr>
<td>9.8.4</td>
<td>Temperature-rise of a part</td>
</tr>
<tr>
<td>9.9</td>
<td>Verification of the operating characteristic</td>
</tr>
<tr>
<td>9.9.1</td>
<td>Verification of the operating characteristics under residual current conditions</td>
</tr>
<tr>
<td>9.9.2</td>
<td>Verification of the operating characteristic under overcurrent conditions</td>
</tr>
<tr>
<td>9.10</td>
<td>Verification of mechanical and electrical endurance</td>
</tr>
<tr>
<td>9.10.1</td>
<td>General test conditions</td>
</tr>
<tr>
<td>9.10.2</td>
<td>Test procedure</td>
</tr>
<tr>
<td>9.10.3</td>
<td>Condition of the RCBO after test</td>
</tr>
<tr>
<td>9.11</td>
<td>Verification of the trip-free mechanism</td>
</tr>
<tr>
<td>9.11.1</td>
<td>General test conditions</td>
</tr>
<tr>
<td>9.11.2</td>
<td>Test procedure</td>
</tr>
<tr>
<td>9.12</td>
<td>Short-circuit tests</td>
</tr>
<tr>
<td>9.12.1</td>
<td>General conditions for test</td>
</tr>
<tr>
<td>9.12.2</td>
<td>Test circuit for short-circuit performance</td>
</tr>
<tr>
<td>9.12.3</td>
<td>Values of test quantities</td>
</tr>
<tr>
<td>9.12.4</td>
<td>Tolerances on test quantities</td>
</tr>
<tr>
<td>9.12.5</td>
<td>Power factor of the test circuit</td>
</tr>
<tr>
<td>9.12.6</td>
<td>Measurement and verification of I^2t and of the peak current (I_p)</td>
</tr>
<tr>
<td>9.12.7</td>
<td>Calibration of the test circuit</td>
</tr>
<tr>
<td>9.12.8</td>
<td>Interpretation of records</td>
</tr>
<tr>
<td>9.12.9</td>
<td>Condition of the RCBO for test</td>
</tr>
<tr>
<td>9.12.10</td>
<td>Behaviour of the RCBO during short-circuit tests</td>
</tr>
<tr>
<td>9.12.11</td>
<td>Test procedure</td>
</tr>
<tr>
<td>9.12.12</td>
<td>Verification of the RCBO after short-circuit test</td>
</tr>
<tr>
<td>9.12.13</td>
<td>Verification of the rated residual making and breaking capacity ($I_{\Delta m}$)</td>
</tr>
</tbody>
</table>
9.13 Verification of resistance to mechanical shock and impact .. 82
 9.13.1 Mechanical shock ... 82
 9.13.2 Mechanical impact ... 83
9.14 Test of resistance to heat .. 85
9.15 Test of resistance to abnormal heat and to fire.. 86
9.16 Verification of the operation of the test device at the limits of rated voltage 87
9.17 Verification of the behaviour of RCBOs functionally dependent on line voltage, classified under 4.1.2.1, in case of failure of the line voltage 88
 9.17.1 Determination of the limiting value of the line voltage (U_x) 88
 9.17.2 Verification of the automatic opening in case of failure of the line voltage 88
 9.17.3 Verification of the correct operation, in presence of a residual current, for RCBOs opening with delay in case of failure of the line voltage .. 88
 9.17.4 Verification of correct operation of RCBOs with three or four current paths, in presence of a residual current, the neutral and one line terminal only being energized .. 89
 9.17.5 Verification of the reclosing function of automatically reclosing RCBOs 89
9.18 Void .. 89
9.19 Verification of behaviour of RCBOs in case of current surges caused by impulse voltages .. 89
 9.19.1 Current surge test for all RCBOs (0.5 μs/100 kHz ring wave test) 89
 9.19.2 Verification of behaviour at surge currents up to 3 000 A (8/20 μs surge current test) .. 89
9.20 Void .. 90
9.21 Void .. 90
9.22 Verification of reliability .. 90
 9.22.1 Climatic test ... 90
 9.22.2 Test with temperature of 40 °C ... 92
9.23 Verification of ageing of electronic components .. 92
9.24 Electromagnetic compatibility (EMC) ... 93
 9.24.1 Tests covered by the present standard ... 93
 9.24.2 Tests to be carried out according to IEC 61543 ... 93
9.25 Test of resistance to rusting ... 93

Annex A (normative) Test sequence and number of samples to be submitted for certification purposes .. 115
Annex B (normative) Determination of clearances and creepage distances 121
Annex C (normative) Arrangement for the detection of the emission of ionized gases during short-circuit tests .. 126
Annex D (normative) Routine tests .. 129
Annex E (normative) Special requirements for auxiliary circuits for safety extra-low voltage .. 130
Annex F (normative) Coordination between RCBOs and separate fuses associated in the same circuit .. 131
Annex G (normative) Additional requirements and tests for RCBOs consisting of a circuit-breaker and a residual current unit designed for assembly on site 132
Annex H (informative) Void .. 136
Annex IA (informative) Methods for determination of short-circuit power-factor 137
Annex IB (informative) Glossary of symbols..138
Annex IC (informative) Examples of terminals..139
Annex ID (informative) Correspondence between ISO and AWG copper conductors142
Annex IE (informative) Follow-up testing programme for RCBOs ..143
Annex J (normative) Particular requirements for RCBOs with screwless type terminals for external copper conductors ...147
Annex K (normative) Particular requirements for RCBOs with flat quick-connect terminations.. 155
Annex L (normative) Specific requirements for RCBOs with screw-type terminals for external untreated aluminium conductors and with aluminium screw-type terminals for use with copper or with aluminium conductors .. 162
Bibliography .. 172

Figure 1 – Thread-forming tapping screw (3.6.10) .. 94
Figure 2 – Thread-cutting tapping screw (3.6.11) ... 94
Figure 3 – Jointed test finger (9.6) .. 95
Figure 4 – Test circuit for the verification of
– operating characteristics (9.9.1)
– trip-free mechanism (9.11)
– behaviour in case of failure of line voltage (9.17.3 and 9.17.4) for RCBOs functionally dependent on line voltage...96
Figure 5 – Test circuit for the verification of the correct operation of RCBOs, in the case of residual pulsating direct currents ..97
Figure 6 – Test circuit for the verification of the correct operation in case of residual pulsating direct currents in presence of a standing smooth direct current of 0,006 A98
Figure 7 – Typical diagram for all short-circuit tests except for 9.12.11.2.2 108
Figure 8 – Typical diagram for short-circuit tests according to 9.12.11.2.2110
Figure 9 – Detail of impedances Z, Z₁ and Z₂ .. 111
Figure 10 – Void .. 101
Figure 11 – Void .. 101
Figure 12 – Void .. 101
Figure 13 – Example of calibration record for short-circuit test ... 102
Figure 14 – Mechanical shock test apparatus (9.13.1) ... 103
Figure 15 – Mechanical impact test apparatus (9.13.2.1) .. 104
Figure 16 – Striking element for pendulum impact test apparatus (9.13.2.1) 105
Figure 17 – Mounting support for sample for mechanical impact test (9.13.2.1) 106
Figure 18 – Example of mounting an unenclosed RCBO for mechanical impact test (9.13.2.1) .. 107
Figure 19 – Example of mounting of panel mounting type RCBO for the mechanical impact test (9.13.2.1) .. 108
Figure 20 – Application of force for mechanical impact test of rail mounted RCBO (9.13.2.2) 109
Figure 21 – Ball-pressure test apparatus (9.14.2) .. 109
Figure 22 – Void .. 109
Figure 23 – Stabilizing period for reliability test (9.22.1.3) .. 110
Figure 24 – Reliability test cycle (9.22.1.3) ... 111
Figure 25 – Example of a test circuit for verification of ageing of electronic components (9.23) .. 112
Figure 26 – Damped oscillator current wave, 0,5 µs/100 kHz ... 112
Figure 27 – Test circuit for the ring wave test at RCBOs .. 113
Figure 28 – Surge current impulse 8/20 µs .. 113
Figure 29 – Test circuit for the surge current test at RCBOs ... 114
Figure B.1 – Examples of methods of measuring creepage distances and clearances........ 125
Figure C.1 – Test arrangement.. 127
Figure C.2 – Grid ... 128
Figure C.3 – Grid circuit .. 128
Figure IC.1 – Examples of pillar terminals ... 139
Figure IC.2 – Example of screw terminals and stud terminals .. 140
Figure IC.3 – Example of saddle terminals .. 141
Figure IC.4 – Examples of lug terminals .. 141
Figure J.1 – Connecting samples .. 152
Figure J.2 – Examples of screwless-type terminals ... 153
Figure K.1 – Example of position of the thermocouple for measurement of the temperature-rise .. 158
Figure K.2 – Dimensions of male tabs .. 159
Figure K.3 – Dimensions of round dimple detents (see Figure K.2) 160
Figure K.4 – Dimensions of rectangular dimple detents (see Figure K.2) 160
Figure K.5 – Dimensions of hole detents .. 160
Figure K.6 – Dimensions of female connectors ... 161
Figure L.1 – General arrangement for the test .. 170
Figure L.2 .. 170
Figure L.3 .. 171
Figure L.4 .. 171
Figure L.5 .. 171
Figure L.6 .. 171

Table 1 – Standard values of rated short-circuit capacity .. 34
Table 2 – Limiting values of break time and non-actuating time for alternating residual currents (r.m.s. values) for type AC and A RCBO ... 35
Table 3 – Maximum values of break time for half-wave residual currents (r.m.s. values) for type A RCBO ... 36
Table 4 – Ranges of overcurrent instantaneous tripping... 36
Table 5 – Rated impulse withstand voltage as a function of the nominal voltage of the installation ... 37
Table 6 – Standard conditions for operation in service .. 40
Table 7 – Minimum clearances and creepage distances .. 44
Table 8 – Connectable cross-sections of copper conductors for screw-type terminals 47
Table 9 – Temperature-rise values .. 50
Table 10 – Time-current operating characteristics .. 51
Table 11 – Requirements for RCBOs functionally dependent on line voltage 53
Table 12 – List of type tests ... 54
Table 13 – Test copper conductors corresponding to the rated currents .. 55
Table 14 – Screw thread diameters and applied torques .. 56
Table 15 – Pulling forces ... 58
Table 17 – Test voltage of auxiliary circuits ... 61
Table 19 – Test voltage for verification of impulse withstand voltage .. 64
Table 20 – List of short-circuit tests ... 73
Table 21 – Power factor ranges of the test circuit .. 75
Table 22 – Ratio between service short-circuit capacity (I_{cs}) and rated short-circuit capacity (I_{cn}) – (factor k) .. 79
Table 23 – Test procedure for I_{cs} in the case of single- and two-pole RCBOs 80
Table 24 – Test procedure for I_{cs} in the case of three- and four-pole RCBOs 80
Table 25 – Test procedure for I_{cn} .. 81
Table 27 – Tests covered by this standard .. 93
Table 28 – Test voltage for verifying the suitability for isolation, referred to the rated impulse withstand voltage of the RCBO and the altitude where the test is carried out 64
Table 29 – Tests to be carried out according to IEC 61543 ... 93
Table A.1 – Test sequences .. 115
Table A.2 – Number of samples for full test procedure ... 117
Table A.3 – Number of samples for simplified test procedure .. 119
Table A.4 – Test sequences for RCBOs having different instantaneous tripping currents 120
Table A.5 – Test sequences for RCBOs of different classification according to 4.6 120
Table IE.1 – Test sequences during follow-up inspections ... 143
Table IE.2 – Number of samples to be tested ... 146
Table J.1 – Connectable conductors ... 149
Table J.2 – Cross-sections of copper conductors connectable to screwless-type terminals .. 150
Table J.3 – Pull forces ... 151
Table K.1 – Informative table on colour code of female connectors in relationship with the cross section of the conductor ... 156
Table K.2 – Overload test forces .. 157
Table K.3 – Dimensions of tabs ... 158
Table K.4 – Dimensions of female connectors .. 161
Table L.1 – Marking for terminals ... 163
Table L.2 – Connectable cross-sections of aluminium conductors for screw-type terminals .. 164
Table L.3 – List of tests according to the material of conductors and terminals 165
Table L.4 – Connectable conductors and their theoretical diameters 165
Table L.5 – Cross sections (S) of aluminium test conductors corresponding to the rated currents .. 166
Table L.6 – Test conductor length ... 167
Table L.7 – Equalizer and busbar dimensions .. 167
Table L.8 – Test current as a function of rated current .. 169
Table L.9 – Example of calculation for determining the average temperature deviation D... 169
This part includes definitions, requirements and tests covering all types of RCBOs. For applicability to a specific type, this part applies in conjunction with the relevant part, as follows:

Part 2-1: Applicability of the general rules to RCBOs functionally independent of line voltage.

Part 2-2: Applicability of the general rules to RCBOs functionally dependent on line voltage.
Residual current operated circuit-breakers with integral overcurrent protection for household and similar uses (RCBOs)

Part 1: General rules (IEC 61009-1, Ed. 3.2 (2013) MOD)

1 Scope

This International Standard applies to residual current operated circuit-breakers with integral overcurrent protection functionally independent of, or functionally dependent on, line voltage for household and similar uses (hereafter referred to as RCBOs), for rated voltages not exceeding 440 V a.c. with rated frequencies of 50 Hz, 60 Hz or 50/60 Hz and rated currents not exceeding 125 A and rated short-circuit capacities not exceeding 25 000 A for operation at 50 Hz or 60 Hz.

These devices are intended to protect people against indirect contact, the exposed conductive parts of the installation being connected to an appropriate earth electrode and to protect against overcurrents the wiring installations of buildings and similar applications. They may be used to provide protection against fire hazards due to a persistent earth fault current, without the operation of the overcurrent protective device.

RCBOs having a rated residual operating current not exceeding 30 mA are also used as a means for additional protection in the case of failure of the protective means against electric shock.

This standard applies to devices performing simultaneously the function of detection of the residual current, of comparison of the value of this current with the residual operating value and of opening of the protected circuit when the residual current exceeds this value, and also of performing the function of making, carrying and breaking overcurrents under specified conditions.

NOTE 1 The content of the present standard related to operation under residual current conditions is based on IEC 61008-1. The content of the present standard related to protection against overcurrents is based on IEC 60898-1.

NOTE 2 RCBOs are essentially intended to be operated by uninstructed persons and designed not to require maintenance. They may be submitted for certification purposes.

NOTE 3 Installation and application rules of RCBOs are given in the IEC 60364 series.

They are intended for use in an environment with pollution degree 2.

NOTE 4 For more severe overvoltage conditions, circuit-breakers complying with other standards (e.g. IEC 60947-2) should be used.

NOTE 5 For environments with higher pollution degrees, enclosures giving the appropriate degree of protection should be used.

RCBOs of the general type are resistant to unwanted tripping, including the case where surge voltages (as a result of switching transients or induced by lightning) cause loading currents in the installation without occurrence of flashover.

RCBOs of type S are considered to be sufficiently proof against unwanted tripping even if the surge voltage causes a flashover and a follow-on current occurs.

NOTE 6 Surge arresters installed downstream of the general type of RCBOs and connected in common mode may cause unwanted tripping.
RCBOs are suitable for isolation.

RCBOs complying with this standard, with the exception of those with an uninterrupted neutral, are suitable for use in IT systems.

Special precautions (e.g. lightning arresters) may be necessary when excessive overvoltages are likely to occur on the supply side (for example in the case of supply through overhead lines) (see IEC 60364-4-44).

NOTE 7 For RCBOs having a degree of protection higher than IP20 special constructions may be required.

This standard also applies to RCBOs obtained by the assembly of an adaptable residual current device with a circuit-breaker. The mechanical assembly shall be effected in the factory by the manufacturer, or on site, in which case the requirements of Annex G shall apply. It also applies to RCBOs having more than one rated current, provided that the means for changing from one discrete rating to another is not accessible in normal service and that the rating cannot be changed without the use of a tool.

Supplementary requirements may be necessary for RCBOs of the plug-in type.

Particular requirements are necessary for RCBOs incorporated in or intended only for association with plugs and socket-outlets or with appliance couplers for household and similar general purposes and if intended to be used at frequencies other than 50 Hz or 60 Hz.

For RCBOs incorporated in, or intended only for association with socket-outlets, the requirements of this standard may be used, as far as applicable, in conjunction with the requirements of IEC 60884-1 or the national requirements of the country where the product is placed on the market.

NOTE 8 Residual current-operated protective devices (RCDs) incorporated in, or intended only for association with socket-outlets, can either meet IEC 62640 or this standard.

NOTE 9 In DK, plugs and socket-outlets shall be in accordance with the requirements of the heavy current regulations section 107.

NOTE 10 In the UK, the plug part associated with an RCBO shall comply with BS 1363-1 and the socket-outlet(s) associated with an RCBO shall comply with BS 1363-2. In the UK, the plug part and the socket-outlet(s) associated with an RCBO need not comply with any IEC 60884-1 requirements.

This standard does not apply to:

- RCBOs intended to protect motors;
- RCBOs the current setting of which is adjustable by means accessible to the user in normal service.

The requirements of this standard apply for normal environmental conditions (see 7.1). Additional requirements may be necessary for RCBOs used in locations having severe environmental conditions.

RCBOs including batteries are not covered by this standard.

A guide for the coordination of RCBOs with fuses is given in Annex F.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.
AS/NZS 61009.1:2015 Residual current operated circuit-breakers with integral overcurrent protection for household and similar uses (RCBOs) - Part 1: General rules

This is a free sample only.

Purchase the full publication here:
https://shop.standards.govt.nz/catalog/61009.1%3A2015%28AS%7CNZS%29/view

Or contact Standards New Zealand using one of the following methods.

Freephone: 0800 782 632 (New Zealand)
Phone: +64 3 943 4259
Email: enquiries@standards.govt.nz