This joint Australian/New Zealand standard was prepared by joint Technical Committee TE-001, Safety of Electrical Equipment. It was approved on behalf of the Council of Standards Australia on 7 May 2015 and on behalf of the Council of Standards New Zealand on 31 July 2015.

This standard was published on 1 September 2015.

The following are represented on Committee TE-001:
Australian Chamber of Commerce and Industry
Australian Communications and Media Authority
Australian Industry Group
Australian Information Industry Association
Australian Subscription Television and Radio Association
CHOICE
Consumer Electronics Association of New Zealand
Consumer Electronics Suppliers Association
Electrical Compliance Testing Association
Electrical Regulatory Authorities Council
Energy Efficiency and Conservation Authority of New Zealand
Engineers Australia
Free TV Australia
Ministry of Business, Innovation and Employment, New Zealand

Additional Interests:
Communications Alliance

Keeping standards up to date
Standards are living documents which reflect progress in science, technology, and systems. To maintain their currency, all standards are periodically reviewed, and new editions are published. Between editions, amendments may be issued. Standards may also be withdrawn. It is important that readers assure themselves they are using a current standard, which should include any amendments which may have been published since the standard was purchased.

Detailed information about joint Australian/New Zealand standards can be found by visiting the standards webshop in Australia at www.saiglobal.com.au or Standards New Zealand’s website at www.standards.co.nz.

Alternatively, Standards Australia publishes an annual printed catalogue with full details of all current standards. For more frequent listings or notification of revisions, amendments, and withdrawals, Standards Australia and Standards New Zealand offer a number of update options. For information about these services, users should contact their respective national standards organisation.

We also welcome suggestions for improvement in our standards, and especially encourage readers to notify us immediately of any apparent inaccuracies or ambiguities. Please address your comments to the Chief Executive of either Standards Australia or Standards New Zealand at the address shown on the title page.

This standard was issued in draft form for comment as DR AS/NZS 60950.1:2014.
Australian/New Zealand Standard

Information technology equipment—Safety

Part 1: General requirements

Originated in Australia as AS 3260—1988.
Originated in New Zealand as NZS 6600:1989.

COPYRIGHT

© Standards Australia Limited/Standards New Zealand

All rights are reserved. No part of this work may be reproduced or copied in any form or by any means, electronic or mechanical, including photocopying, without the written permission of the publisher, unless otherwise permitted under the Copyright Act 1968 (Australia) or the Copyright Act 1994 (New Zealand).

Jointly published by SAI Global Limited under licence from Standards Australia Limited, GPO Box 476, Sydney, NSW 2001 and by Standards New Zealand, Private Bag 2439, Wellington 6140.

ISBN (Print) 978-1-77664-044-7
ISBN (PDF) 978-1-77664-045-4
PREFACE

This Standard was prepared by the Joint Standards Australia/Standards New Zealand Committee TE-001, Safety of Electrical Equipment, to supersede AS/NZS 60950.1:2011 and its amendments, two years from the date of publication. During this period both Standards will run in parallel, then the 2011 edition is anticipated to be withdrawn.

The objective of this Standard is to establish minimum safety requirements for the design, construction and operation of mains-powered or battery-powered information technology equipment. It sets out requirements intended to ensure the safety of the operator and other people who may come into contact with the equipment and, where specifically stated, service personnel.

This Standard is an adoption with national modifications and has been reproduced from IEC 60950-1, Ed. 2.2 (2013), Information technology equipment—Safety, Part 1: General requirements, its Corrigendum 1 (2006), its Amendment 1 (2009), its Amendment 1 Corrigendum 1 (2012), and its Amendment 2 (2013) which are all incorporated in the source text. A vertical line in the margin shows where the base publication has been modified by Amendments 1 and 2. Additions and deletions are displayed in red, with deletions being struck through. The Australian/New Zealand variations are listed in Appendix ZZ. This Standard has been varied from the IEC Standard as indicated to take account of Australian/New Zealand conditions.

Variations made to IEC 60950-1, Ed. 2.2 (2013) form the Australian/New Zealand variations for the purposes of the CB scheme for recognition of testing to standards for safety of electrical equipment. They are listed in Appendix ZZ.

The changes in this Standard from AS/NZS 60950.1:2011 and its Amendment 1 (2012) are principally the changes between IEC 60950-1, Ed. 2.1 (2009) and its Amendment 2 (2013), which are listed in Annex BB.

The purpose of AS/NZS 60950.1:2015 is to—

(a) adopt into the standard, IEC Amendment 2 (2013);
(b) update the Preface; and
(c) update AS/NZS 60950.1:2015 Appendix ZZ in line with the changes introduced by IEC Amendment 2 (2013).

This Standard is structured as follows:

(i) Preface.
(ii) IEC 60950-1, Ed. 2.2 (2013) (unedited from the Contents page to the final clause of the source document).
(iii) Appendix ZZ—Australian/New Zealand variations to the source document.

The variations listed in Appendix ZZ address issues including the following:

(A) Addition of definition of potential ignition source.
(B) Australian/New Zealand requirements for flexible cords.
(C) Requirements for stability of devices used for television purposes.
(D) Appropriate tests of AS/NZS 3112 for plug-in devices.
(E) Addition of a clarification NOTE concerning the overcharging of a rechargeable battery.
(F) Alternate resistance to fire tests.
(G) Australian/New Zealand requirements for impulse and electric strength tests.
(H) Addition of requirements for button/coin batteries and R1 batteries.
As this Standard is reproduced from an International Standard, the following applies:

1. In the source text ‘IEC/ISO number’ should read ‘this Australian/New Zealand Standard’.
2. A full point substitutes for a comma when referring to a decimal marker.

References to International Standards should be replaced by references to Australian or Australian/New Zealand Standards, as follows:

<table>
<thead>
<tr>
<th>Reference to International Standard</th>
<th>Australian/New Zealand Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC 60065 Audio, video and similar electronic apparatus—Safety requirements</td>
<td>AS/NZS 60065 Audio, video and similar electronic apparatus—Safety requirements (IEC 60065, Ed.7.2 (2011) MOD)</td>
</tr>
<tr>
<td>IEC 60068 Environmental testing</td>
<td>AS 60068 Environmental testing</td>
</tr>
<tr>
<td>IEC 60068-2-78 Part 2-78: Tests—Test Cab: Damp heat, steady state</td>
<td>AS/NZS 60068.2.78 Part 2.78: Tests—Test Cab: Damp heat, steady state</td>
</tr>
<tr>
<td>IEC 60245 Rubber insulated cables—Rated voltages up to and including 450/750 V</td>
<td>AS/NZS 60245 Rubber insulated cables—Rated voltages up to and including 450/750 V</td>
</tr>
<tr>
<td>IEC 60245-4 Part 4: Cords and flexible cables</td>
<td>AS/NZS 60245.4 Part 4: Cords and flexible cables</td>
</tr>
<tr>
<td>IEC 60320 Plugs, socket-outlets and coupler for household and similar general purposes (series)</td>
<td>AS/NZS 60320 Plugs, socket-outlets and coupler for household and similar general purposes (series)</td>
</tr>
<tr>
<td>IEC 60417 Graphical symbols for use on equipment</td>
<td>AS 60417 Graphical symbols for use on equipment</td>
</tr>
<tr>
<td>IEC 60695 Fire hazard testing</td>
<td>AS/NZS 60695 Fire hazard testing</td>
</tr>
<tr>
<td>IEC 60695-10-2 Part 10-2: Abnormal heat—Ball pressure test</td>
<td>AS/NZS 60695.10.2 Part 10.2: Abnormal heat—Ball pressure test</td>
</tr>
<tr>
<td>IEC 60695-11-4 Part 11-4: Test flames—50 W flames—Apparatus and conformational test methods</td>
<td>AS/NZS 60695.11.4 Part 11.4: Test flames—50 W flames—Apparatus and conformational test methods</td>
</tr>
<tr>
<td>IEC 60695-11-5 Part 11-5: Test flames—Needle flame test method—Apparatus and confirmatory test arrangement and guidance</td>
<td>AS/NZS 60695.11.5 Part 11.5: Test flames—Needle flame test method—Apparatus and confirmatory test arrangement and guidance</td>
</tr>
</tbody>
</table>
IEC

60695-11-10 Part 11-10: Test flames—50 W horizontal and vertical flame test methods

60695-11-20 Part 11-20: Test flames—500 W flame test methods

60825 Safety of laser products

60825-1 Part 1: Equipment classification, requirements and user’s guide

60825-2 Part 2: Safety of optical fibre communication

60825-9 Part 9: Compilation of maximum permissible exposure to incoherent optical radiation

60825-12 Part 12: Safety of free space optical communication systems used for transmission of information

60947 Low voltage switchgear and control gear

60947-1 Part 1: General rules

60990 Methods of measurement of touch current and protective conductor current

60998 Connecting devices for low-voltage circuits for household and similar purposes

60998-1 Part 1: General requirements

60999 Connecting devices—Electrical copper conductors—Safety requirements for screw-type and screwless-type clamping units

60999-1 Part 1: General requirements and particular requirements for clamping units for conductors from 0.2 mm² up to 35 mm² (included)

60999-2 Part 2: Particular requirements for clamping units for conductors above 35 mm² up to 300 mm² (included)

61058 Switches for appliances

61058-1 Part 1: General requirements

62471 Photobiological safety of lamps and lamp systems

AS/NZS

60695.11.10 Part 11.10: Test flames—50 W horizontal and vertical flame test methods

60695.11.20 Part 11.20: Test flames—500 W flame test methods

60825 Safety of laser products

60825.1 Part 1: Equipment classification, requirements and user’s guide

60825.2 Part 2: Safety of optical fibre communication

60825.9 Part 9: Compilation of maximum permissible exposure to incoherent optical radiation

60825.12 Part 12: Safety of free space optical communication systems used for transmission of information

60947.1 Part 1: General rules

60990.1 Methods of measurement of touch current and protective conductor current

60998.1 Part 1: General requirements

60999.1 Part 1: General requirements and particular requirements for clamping units for conductors from 0.2 mm² up to 35 mm² (included)

60999.2 Part 2: Particular requirements for clamping units for conductors above 35 mm² up to 300 mm² (included)

61058 Switches for appliances

61058.1 Part 1: General requirements (IEC 61058-1, Ed. 3.1 (2000), MOD)

62471 Photobiological safety of lamps and lamp systems

Only normative references that have been adopted as Australian or Australian/New Zealand Standard have been listed.

The terms ‘normative’ and ‘informative’ have been used in this Standard to define the application of the annexes or appendices to which they apply. A ‘normative’ annex or appendix is an integral part of a Standard, whereas an ‘informative’ annex or appendix is only for information and guidance.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Principles of safety</td>
<td>10</td>
</tr>
<tr>
<td>0.1</td>
<td>General principles of safety</td>
<td>10</td>
</tr>
<tr>
<td>0.2</td>
<td>Hazards</td>
<td>11</td>
</tr>
<tr>
<td>0.3</td>
<td>Materials and components</td>
<td>14</td>
</tr>
<tr>
<td>1</td>
<td>General</td>
<td>15</td>
</tr>
<tr>
<td>1.1</td>
<td>Scope</td>
<td>15</td>
</tr>
<tr>
<td>1.2</td>
<td>Definitions</td>
<td>17</td>
</tr>
<tr>
<td>1.3</td>
<td>General requirements</td>
<td>32</td>
</tr>
<tr>
<td>1.4</td>
<td>General conditions for tests</td>
<td>33</td>
</tr>
<tr>
<td>1.5</td>
<td>Components</td>
<td>38</td>
</tr>
<tr>
<td>1.6</td>
<td>Power interface</td>
<td>46</td>
</tr>
<tr>
<td>1.7</td>
<td>Markings and instructions</td>
<td>46</td>
</tr>
<tr>
<td>2</td>
<td>Protection from hazards</td>
<td>55</td>
</tr>
<tr>
<td>2.1</td>
<td>Protection from electric shock and energy hazards</td>
<td>55</td>
</tr>
<tr>
<td>2.2</td>
<td>SELV circuits</td>
<td>64</td>
</tr>
<tr>
<td>2.3</td>
<td>TNV circuits</td>
<td>67</td>
</tr>
<tr>
<td>2.4</td>
<td>Limited current circuits</td>
<td>72</td>
</tr>
<tr>
<td>2.5</td>
<td>Limited power sources</td>
<td>73</td>
</tr>
<tr>
<td>2.6</td>
<td>Provisions for earthing and bonding</td>
<td>74</td>
</tr>
<tr>
<td>2.7</td>
<td>Overcurrent and earth fault protection in primary circuits</td>
<td>82</td>
</tr>
<tr>
<td>2.8</td>
<td>Safety interlocks</td>
<td>87</td>
</tr>
<tr>
<td>2.9</td>
<td>Electrical insulation</td>
<td>88</td>
</tr>
<tr>
<td>2.10</td>
<td>Clearances, creepage distances and distances through insulation</td>
<td>94</td>
</tr>
<tr>
<td>3</td>
<td>Wiring, connections and supply</td>
<td>123</td>
</tr>
<tr>
<td>3.1</td>
<td>General</td>
<td>123</td>
</tr>
<tr>
<td>3.2</td>
<td>Connection to a mains supply</td>
<td>126</td>
</tr>
<tr>
<td>3.3</td>
<td>Wiring terminals for connection of external conductors</td>
<td>133</td>
</tr>
<tr>
<td>3.4</td>
<td>Disconnection from the mains supply</td>
<td>136</td>
</tr>
<tr>
<td>3.5</td>
<td>Interconnection of equipment</td>
<td>139</td>
</tr>
<tr>
<td>4</td>
<td>Physical requirements</td>
<td>140</td>
</tr>
<tr>
<td>4.1</td>
<td>Stability</td>
<td>140</td>
</tr>
<tr>
<td>4.2</td>
<td>Mechanical strength</td>
<td>141</td>
</tr>
<tr>
<td>4.3</td>
<td>Design and construction</td>
<td>145</td>
</tr>
<tr>
<td>4.4</td>
<td>Protection against hazardous moving parts</td>
<td>154</td>
</tr>
<tr>
<td>4.5</td>
<td>Thermal requirements</td>
<td>156</td>
</tr>
<tr>
<td>4.6</td>
<td>Openings in enclosures</td>
<td>160</td>
</tr>
<tr>
<td>4.7</td>
<td>Resistance to fire</td>
<td>166</td>
</tr>
<tr>
<td>5</td>
<td>Electrical requirements and simulated abnormal conditions</td>
<td>173</td>
</tr>
<tr>
<td>5.1</td>
<td>Touch current and protective conductor current</td>
<td>173</td>
</tr>
<tr>
<td>5.2</td>
<td>Electric strength</td>
<td>181</td>
</tr>
<tr>
<td>5.3</td>
<td>Abnormal operating and fault conditions</td>
<td>185</td>
</tr>
<tr>
<td>Annex</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>A</td>
<td>Tests for resistance to heat and fire</td>
<td>198</td>
</tr>
<tr>
<td>B</td>
<td>Motor tests under abnormal conditions</td>
<td>201</td>
</tr>
<tr>
<td>C</td>
<td>Transformers</td>
<td>207</td>
</tr>
<tr>
<td>D</td>
<td>Measuring instruments for touch current tests</td>
<td>210</td>
</tr>
<tr>
<td>E</td>
<td>Temperature rise of a winding</td>
<td>212</td>
</tr>
<tr>
<td>F</td>
<td>Measurement of clearances and creepage distances</td>
<td>213</td>
</tr>
<tr>
<td>G</td>
<td>Alternative method for determining minimum clearances</td>
<td>221</td>
</tr>
<tr>
<td>H</td>
<td>Ionizing radiation</td>
<td>229</td>
</tr>
<tr>
<td>J</td>
<td>Table of electrochemical potentials (see 2.6.5.6)</td>
<td>230</td>
</tr>
<tr>
<td>K</td>
<td>Thermal controls</td>
<td>232</td>
</tr>
<tr>
<td>L</td>
<td>Normal load conditions for some types of electrical business equipment</td>
<td>234</td>
</tr>
<tr>
<td>M</td>
<td>Criteria for telephone ringing signals</td>
<td>236</td>
</tr>
<tr>
<td>N</td>
<td>Impulse test generators</td>
<td>241</td>
</tr>
<tr>
<td>P</td>
<td>Normative references</td>
<td>243</td>
</tr>
<tr>
<td>Q</td>
<td>Voltage dependent resistors (VDRs)</td>
<td>248</td>
</tr>
<tr>
<td>R</td>
<td>Examples of requirements for quality control programmes</td>
<td>250</td>
</tr>
<tr>
<td>S</td>
<td>Procedure for impulse testing</td>
<td>253</td>
</tr>
<tr>
<td>T</td>
<td>Guidance on protection against ingress of water</td>
<td>255</td>
</tr>
<tr>
<td>U</td>
<td>Insulated winding wires for use without interleaved insulation</td>
<td>257</td>
</tr>
<tr>
<td>V</td>
<td>AC power distribution systems</td>
<td>263</td>
</tr>
<tr>
<td>W</td>
<td>Summation of touch currents</td>
<td>270</td>
</tr>
<tr>
<td>X</td>
<td>Maximum heating effect in transformer tests</td>
<td>273</td>
</tr>
<tr>
<td>Y</td>
<td>Ultraviolet light conditioning test</td>
<td>275</td>
</tr>
<tr>
<td>Z</td>
<td>Overvoltage categories (see 2.10.3.2 and Clause G.2)</td>
<td>276</td>
</tr>
<tr>
<td>AA</td>
<td>Mandrel test (see 2.10.5.8)</td>
<td>277</td>
</tr>
<tr>
<td>BB</td>
<td>Changes in the second edition</td>
<td>280</td>
</tr>
<tr>
<td>CC</td>
<td>Evaluation of integrated circuit (IC) current limiters</td>
<td>283</td>
</tr>
<tr>
<td>DD</td>
<td>Requirements for the mounting means of rack-mounted equipment</td>
<td>286</td>
</tr>
<tr>
<td>EE</td>
<td>Household and home/office document/media shredders</td>
<td>288</td>
</tr>
</tbody>
</table>
Bibliography ... 292
Index ... 294

Figure 2A – Test finger .. 58
Figure 2B – Test pin ... 59
Figure 2C – Test probe ... 59
Figure 2D - Accessibility of internal conductive parts .. 60
Figure 2E – Voltages in SELV circuits under single fault conditions .. 66

Figure 2E.1 – Voltages in SELV circuits under single fault conditions for a single pulse above \(V_1\) .. 65

Figure 2E.2 – Voltages in SELV circuits under single fault conditions for multiple pulses above \(V_1\) .. 66

Figure 2F – Maximum voltages permitted after a single fault ... 68
Figure 2G – Test generator ... 72
Figure 2H – Examples of application of insulation ... 93
Figure 2J – Thermal ageing time .. 120
Figure 2K – Abrasion resistance test for coating layers .. 121

Figure 4A – Impact test using a steel ball .. 143
Figure 4B – Examples of cross-sections of designs of openings preventing vertical access 160
Figure 4C – Examples of louvre design ... 161
Figure 4D – Enclosure openings .. 162

Figure 4E – Typical bottom of a fire enclosure for partially enclosed component or assembly 163
Figure 4F – Baffle plate construction .. 163

Figure 5A – Test circuit for touch current of single-phase equipment on a star TN or TT power supply system .. 175

Figure 5B – Test circuit for touch current of three-phase equipment on a star TN or TT power supply system .. 175

Figure 6A – Test for separation between a telecommunication network and earth 191
Figure 6B – Application points of test voltage .. 192

Figure B.1 – Determination of arithmetic average temperature .. 202
Figure C.1 – Determination of arithmetic average temperature .. 208

Figure D.1 – Measuring instrument .. 210
Figure D.2 – Alternative measuring instrument .. 211

Figure F.1 – Narrow groove ... 213
Figure F.2 – Wide groove .. 213
Figure F.3 – V-shaped groove .. 214
Figure F.4 – Rib .. 214

Figure F.5 – Uncemented joint with narrow groove ... 214
Figure F.6 – Uncemented joint with wide groove ... 215
Figure F.7 – Uncemented joint with narrow and wide grooves .. 215
Figure F.8 – Narrow recess .. 216
Figure F.9 – Wide recess ... 217
Figure F.10 – Coating around terminals .. 217
Table U.2 – Oven temperature .. 261
Table X.1 – Test steps .. 273
Table Z.1 – Overvoltage categories .. 276
0 Principles of safety

The following principles have been adopted by technical committee 108 in the development of this standard.

These principles do not cover performance or functional characteristics of equipment.

Words printed in SMALL CAPITALS are terms that are defined in 1.2 of this standard.

0.1 General principles of safety

It is essential that designers understand the underlying principles of safety requirements in order that they can engineer safe equipment.

These principles are not an alternative to the detailed requirements of this standard, but are intended to provide designers with an appreciation of the basis of these requirements. Where the equipment involves technologies, components and materials or methods of construction not specifically covered, the design of the equipment should provide a level of safety not less than those described in these principles of safety.

NOTE The need for additional detailed requirements to cope with a new situation should be brought promptly to the attention of the appropriate committee.

Designers shall take into account not only normal operating conditions of the equipment but also likely fault conditions, consequential faults, foreseeable misuse and external influences such as temperature, altitude, pollution, moisture, overvoltages on the MAINS SUPPLY and overvoltages on a TELECOMMUNICATION NETWORK or a CABLE DISTRIBUTION SYSTEM. Dimensioning of insulation spacings should take account of possible reductions by manufacturing tolerances, or where deformation could occur due to handling, shock and vibration likely to be encountered during manufacture, transport and normal use.

The following priorities should be observed in determining what design measures to adopt:

– where possible, specify design criteria that will eliminate, reduce or guard against hazards;

– where the above is not practicable because the functioning of the equipment would be impaired, specify the use of protective means independent of the equipment, such as personal protective equipment (which is not specified in this standard);

– where neither of the above measures is practicable, or in addition to those measures, specify the provision of markings and instructions regarding the residual risks.

There are two types of persons whose safety needs to be considered, USERS (or OPERATORS) and SERVICE PERSONS.

USER is the term applied to all persons other than SERVICE PERSONS. Requirements for protection should assume that USERS are not trained to identify hazards, but will not intentionally create a hazardous situation. Consequently, the requirements will provide protection for cleaners and casual visitors as well as the assigned USERS. In general, USERS should not have access to hazardous parts, and to this end, such parts should only be in SERVICE ACCESS AREAS or in equipment located in RESTRICTED ACCESS LOCATIONS.

When USERS are admitted to RESTRICTED ACCESS LOCATIONS they shall be suitably instructed.

SERVICE PERSONS are expected to use their training and skill to avoid possible injury to themselves and others due to obvious hazards that exist in SERVICE ACCESS AREAS of the equipment or on equipment located in RESTRICTED ACCESS LOCATIONS. However, SERVICE
PERSONS should be protected against unexpected hazards. This can be done by, for example, locating parts that need to be accessible for servicing away from electrical and mechanical hazards, providing shields to avoid accidental contact with hazardous parts, and providing labels or instructions to warn personnel about any residual risk.

Information about potential hazards can be marked on the equipment or provided with the equipment, depending on the likelihood and severity of injury, or made available for SERVICE PERSONS. In general, USERS shall not be exposed to hazards likely to cause injury, and information provided for USERS should primarily aim at avoiding misuse and situations likely to create hazards, such as connection to the wrong power source and replacement of fuses by incorrect types.

MOVABLE EQUIPMENT is considered to present a slightly increased risk of shock, due to possible extra strain on the supply cord leading to rupture of the earthing conductor. With HAND-HELD EQUIPMENT, this risk is increased; wear on the cord is more likely, and further hazards could arise if the units were dropped. TRANSPORTABLE EQUIPMENT introduces a further factor because it can be used and carried in any orientation; if a small metallic object enters an opening in the ENCLOSURE it can move around inside the equipment, possibly creating a hazard.

0.2 Hazards

Application of a safety standard is intended to reduce the risk of injury or damage due to the following:

- electric shock;
- energy related hazards;
- fire;
- heat related hazards;
- mechanical hazards;
- radiation;
- chemical hazards.

0.2.1 Electric shock

Electric shock is due to current passing through the human body. The resulting physiological effects depend on the value and duration of the current and the path it takes through the body. The value of the current depends on the applied voltage, the impedance of the source and the impedance of the body. The body impedance depends in turn on the area of contact, moisture in the area of contact and the applied voltage and frequency. Currents of approximately half a milliampere can cause a reaction in persons in good health and may cause injury indirectly due to involuntary reaction. Higher currents can have more direct effects, such as burn or muscle tetanization leading to inability to let go or to ventricular fibrillation.

Steady state voltages up to 42,4 V peak, or 60 V d.c., are not generally regarded as hazardous under dry conditions for an area of contact equivalent to a human hand. Bare parts that have to be touched or handled should be at earth potential or properly insulated.

Some equipment will be connected to telephone and other external networks. Some TELECOMMUNICATION NETWORKS operate with signals such as voice and ringing superimposed on a steady d.c. supply voltage; the total may exceed the values given above for steady-state voltages. It is common practice for the SERVICE PERSONS of telephone companies to handle parts of such circuits bare-handed. This has not caused serious injury, because of the use of cadenced ringing and because there are limited areas of contact with bare conductors normally handled by SERVICE PERSONS. However, the area of contact of a part accessible to
the USER, and the likelihood of the part being touched, should be further limited (for example, by the shape and location of the part).

It is normal to provide two levels of protection for USERS to prevent electric shock. Therefore, the operation of equipment under normal conditions and after a single fault, including any consequential faults, should not create a shock hazard. However, provision of additional protective measures, such as protective earthing or SUPPLEMENTARY INSULATION, is not considered a substitute for, or a relief from, properly designed BASIC INSULATION.

Harm may result from:

- Contact with bare parts normally at HAZARDOUS VOLTAGES.
- Breakdown of insulation between parts normally at HAZARDOUS VOLTAGES and accessible conductive parts.
- Contact with circuits connected to TELECOMMUNICATION NETWORKS that exceed 42.4 V peak or 60 V d.c.
- Breakdown of USER-accessible insulation.
- TOUCH CURRENT (leakage current) flowing from parts at HAZARDOUS VOLTAGES to accessible parts, or failure of a protective earthing connection. TOUCH CURRENT may include current due to EMC filter components connected between PRIMARY CIRCUITS and accessible parts.

Examples of measures to reduce risks:

- Prevent USER access to parts at HAZARDOUS VOLTAGES by fixed or locked covers, SAFETY INTERLOCKS, etc. Discharge accessible capacitors that are at HAZARDOUS VOLTAGES.
- Provide BASIC INSULATION and connect the accessible conductive parts and circuits to earth so that exposure to the voltage which can develop is limited because overcurrent protection will disconnect the parts having low impedance faults within a specified time; or provide a metal screen connected to protective earth between the parts, or provide DOUBLE INSULATION or REINFORCED INSULATION between the parts, so that breakdown to the accessible part is not likely to occur.
- Limit the accessibility and area of contact of such circuits, and separate them from unearthed parts to which access is not limited.
- Insulation that is accessible to the USER should have adequate mechanical and electrical strength to reduce the likelihood of contact with HAZARDOUS VOLTAGES.
- Limit TOUCH CURRENT to a specified value, or provide a high integrity protective earthing connection.

0.2.2 Energy related hazards

Injury or fire may result from a short-circuit between adjacent poles of high current supplies or high capacitance circuits, causing:

- burns;
- arcing;
- ejection of molten metal.

Even circuits whose voltages are safe to touch may be hazardous in this respect.

Examples of measures to reduce risks include:

- separation;
- shielding;
- provision of SAFETY INTERLOCKS.

0.2.3 Fire

Risk of fire may result from excessive temperatures either under normal operating conditions or due to overload, component failure, insulation breakdown or loose connections. Fires originating within the equipment should not spread beyond the immediate vicinity of the source of the fire, nor cause damage to the surroundings of the equipment.

Examples of measures to reduce risks include:
- providing overcurrent protection;
- using constructional materials having appropriate flammability properties for their purpose;
- selection of parts, components and consumable materials to avoid high temperature which might cause ignition;
- limiting the quantity of combustible materials used;
- shielding or separating combustible materials from likely ignition sources;
- using ENCLOSURES or barriers to limit the spread of fire within the equipment;
- using suitable materials for ENCLOSURES so as to reduce the likelihood of fire spreading from the equipment.

0.2.4 Heat related hazards

Injury may result from high temperatures under normal operating conditions, causing:
- burns due to contact with hot accessible parts;
- degradation of insulation and of safety-critical components;
- ignition of flammable liquids.

Examples of measures to reduce risks include:
- taking steps to avoid high temperature of accessible parts;
- avoiding temperatures above the ignition point of liquids;
- provision of markings to warn USERS where access to hot parts is unavoidable.

0.2.5 Mechanical hazards

Injury may result from:
- sharp edges and corners;
- moving parts that have the potential to cause injury;
- equipment instability;
- flying particles from imploding cathode ray tubes and exploding high pressure lamps.

Examples of measures to reduce risks include:
- rounding of sharp edges and corners;
- guarding;
- provision of SAFETY INTERLOCKS;
- providing sufficient stability to free-standing equipment;
– selecting cathode ray tubes and high pressure lamps that are resistant to implosion and explosion respectively;
– provision of markings to warn USERS where access is unavoidable.

0.2.6 Radiation

Injury to USERS and to SERVICE PERSONS may result from some forms of radiation emitted by equipment. Examples are sonic (acoustic), radio frequency, infra-red, ultraviolet and ionizing radiation, and high intensity visible and coherent light (lasers).

Examples of measures to reduce risks include:
– limiting the energy level of potential radiation sources;
– screening radiation sources;
– provision of SAFETY INTERLOCKS;
– provision of markings to warn USERS where exposure to the radiation hazard is unavoidable.

0.2.7 Chemical hazards

Injury may result from contact with some chemicals or from inhalation of their vapours and fumes.

Examples of measures to reduce risks include:
– avoiding the use of constructional and consumable materials likely to cause injury by contact or inhalation during intended and normal conditions of use;
– avoiding conditions likely to cause leakage or vaporization;
– provision of markings to warn USERS about the hazards.

0.3 Materials and components

Materials and components used in the construction of equipment should be so selected and arranged that they can be expected to perform in a reliable manner for the anticipated life of the equipment without creating a hazard, and would not contribute significantly to the development of a serious fire hazard. Components should be selected so that they remain within their manufacturers’ ratings under normal operating conditions, and do not create a hazard under fault conditions.
Information technology equipment—Safety

Part 1:
General requirements (IEC 60950-1, Ed. 2.2 (2013), MOD)

1 General

1.1 Scope

1.1.1 Equipment covered by this standard

This standard is applicable to mains-powered or battery-powered information technology equipment, including electrical business equipment and associated equipment, with a RATED VOLTAGE not exceeding 600 V.

This standard is also applicable to such information technology equipment:
- designed for use as telecommunication terminal equipment and TELECOMMUNICATION NETWORK infrastructure equipment, regardless of the source of power;
- designed and intended to be connected directly to, or used as infrastructure equipment in, a CABLE DISTRIBUTION SYSTEM, regardless of the source of power;
- designed to use the AC MAINS SUPPLY as a communication transmission medium (see Clause 6, Note 4 and 7.1, Note 4).

This part of IEC 60950 is also applicable to:
- components and subassemblies intended for incorporation in information technology equipment. It is not expected that Such components and subassemblies need not comply with every aspect requirement of the standard, provided that the complete information technology equipment, incorporating such components and subassemblies, does comply;
- external power supply units intended to supply other equipment within the scope of this part of IEC 60950;
- accessories intended to be used with equipment within the scope of this part of IEC 60950.

NOTE 1 Examples of aspects with which uninstalled components, subassemblies and accessories may not comply include the marking of the power rating and access to hazardous parts.

NOTE 2 This standard may be applied to the electronic parts of equipment even if that equipment does not wholly fall within its Scope, such as large-scale air conditioning systems, fire detection systems and fire extinguishing systems. Different requirements may be necessary for some applications.

This standard specifies requirements intended to reduce risks of fire, electric shock or injury for the OPERATOR and layman who may come into contact with the equipment and, where specifically stated, for a SERVICE PERSON.

This standard is intended to reduce such risks with respect to installed equipment, whether it consists of a system of interconnected units or independent units, subject to installing, operating and maintaining the equipment in the manner prescribed by the manufacturer.

Examples of equipment that is in the scope of this standard are:
Generic product type

<table>
<thead>
<tr>
<th>Generic product type</th>
<th>Specific example of generic type</th>
</tr>
</thead>
<tbody>
<tr>
<td>banking equipment</td>
<td>monetary processing machines including automated teller (cash dispensing) machines (ATM)</td>
</tr>
<tr>
<td>data and text processing machines and associated equipment</td>
<td>data preparation equipment, data processing equipment, data storage equipment, personal computers, plotters, printers, scanners, text processing equipment, visual display units</td>
</tr>
<tr>
<td>data network equipment</td>
<td>bridges, data circuit terminating equipment, data terminal equipment, routers</td>
</tr>
<tr>
<td>electrical and electronic retail equipment</td>
<td>cash registers, point of sale terminals including associated electronic scales</td>
</tr>
<tr>
<td>electrical and electronic office machines</td>
<td>calculators, copying machines, dictation equipment, document shredding machines, duplicators, erasers, micrographic office equipment, motor-operated files, paper trimmers (punchers, cutting machines, separators), paper jogging machines, pencil sharpeners, staplers, typewriters</td>
</tr>
<tr>
<td>other information technology equipment</td>
<td>photoprinting equipment, public information terminals, multimedia equipment</td>
</tr>
<tr>
<td>postage equipment</td>
<td>mail processing machines, postage machines</td>
</tr>
<tr>
<td>telecommunication network infrastructure equipment</td>
<td>billing equipment, multiplexers, network powering equipment, network terminating equipment, radio basestations, repeaters, transmission equipment, telecommunication switching equipment</td>
</tr>
<tr>
<td>telecommunication terminal equipment</td>
<td>facsimile equipment, key telephone systems, modems, PABXs, pagers, telephone answering machines, telephone sets (wired and wireless)</td>
</tr>
</tbody>
</table>

NOTE 3 The requirements of IEC 60065 may also be used to meet safety requirements for multimedia equipment. See IEC Guide 112, *Guide on the safety of multimedia equipment*.

This list is not intended to be comprehensive, and equipment that is not listed is not necessarily excluded from the Scope.

Equipment complying with the relevant requirements in this standard is considered suitable for use with process control equipment, automatic test equipment and similar systems requiring information processing facilities. However, this standard does not include requirements for performance or functional characteristics of equipment.

1.1.2 Additional requirements

Requirements additional to those specified in this standard may be necessary for:

- equipment intended for operation in special environments (for example, extremes of temperature; excessive dust, moisture or vibration; flammable gases; and corrosive or explosive atmospheres);
- electromedical applications with physical connections to the patient;
- equipment intended to be used in vehicles, on board ships or aircraft, in tropical countries, or at altitudes greater than 2 000 m;
- equipment intended for use where ingress of water is possible; for guidance on such requirements and on relevant testing, see Annex T.

NOTE Attention is drawn to the fact that authorities of some countries impose additional requirements.

1.1.3 Exclusions

This standard does not apply to:

- power supply systems which are not an integral part of the equipment, such as motor-generator sets, battery backup systems and distribution transformers;
- building installation wiring;
AS/NZS 60950.1:2015 Information technology equipment - Safety -
Part 1: General requirements

This is a free sample only.

Purchase the full publication here:
https://shop.standards.govt.nz/catalog/60950.1%3A2015%28AS%7CNZS%29/view

Or contact Standards New Zealand using one of the following methods.

Freephone: 0800 782 632 (New Zealand)
Phone: +64 3 943 4259
Email: enquiries@standards.govt.nz