This joint Australian/New Zealand standard was prepared by joint Technical Committee BD-090, Bridge Design. It was approved on behalf of the Council of Standards Australia on 13 March 2017 and by the New Zealand Standards Approval Board on 7 March 2017.

This standard was published on 31 March 2017.

The following are represented on Committee BD-090:

Australian Industry Group
Australian Steel Institute
Austroads
Bureau of Steel Manufacturers of Australia
Cement & Concrete Association of New Zealand
Cement Concrete & Aggregates Australia—Cement
Concrete Institute of Australia
Consult Australia
Engineers Australia
New Zealand Heavy Engineering Research Association
Rail Industry Safety and Standards Board
Steel Construction New Zealand
Steel Reinforcement Institute of Australia
Sydney Trains

Keeping standards up to date

Standards are living documents which reflect progress in science, technology, and systems. To maintain their currency, all standards are periodically reviewed, and new editions are published. Between editions, amendments may be issued. Standards may also be withdrawn. It is important that readers assure themselves they are using a current standard, which should include any amendments which may have been published since the standard was purchased.

Detailed information about joint Australian/New Zealand standards can be found by visiting the standards webshop in Australia at www.saiglobal.com or Standards New Zealand’s website at www.standards.govt.nz.

For more frequent listings or notification of revisions, amendments, and withdrawals, Standards Australia and Standards New Zealand offer a number of update options. For information about these services, users should contact their respective national standards organisation.

We also welcome suggestions for improvement in our standards, and especially encourage readers to notify us immediately of any apparent inaccuracies or ambiguities. Please address your comments to either the Chief Executive of Standards Australia or the New Zealand Standards Executive at the address shown on the title page.

This standard was issued in draft form for comment as DR2 AS/NZS 5100.6:2016.
PREFACE

This Standard was prepared by the Standards Australia Committee BD-090, Bridge Design, Sub-Committee 6, Steel and Composite Construction, to supersede AS 5100.6—2004.

This Standard is also designated as AUSTROADS publication AP-G51.6-17.

The objectives of the AS(AS/NZS) 5100 series are to provide nationally acceptable requirements for—

(a) the design of road, rail, pedestrian and cyclist path bridges;
(b) the specific application of concrete, steel, composite construction and timber construction methods, which embody principles that may be applied to other materials in association with relevant Standards;
(c) the assessment of the load capacity of existing bridges; and
(d) the strengthening and rehabilitation of existing bridges.

The objective of this Part (AS/NZS 5100.6) is to provide design rules for steel and steel-concrete composite bridges, or member within bridges.

Whereas earlier editions of the Bridge design were essentially administered by the infrastructure owners and applied to their own inventory, an increasing number of bridges are being built under the design-construct-operate principle and being handed over to the relevant statutory authority after several years of operation. This Standard includes clauses intended to facilitate the specification to the designer of the functional requirements of the owner to ensure the long-term performance and serviceability of the bridge and associated structure.

Significant differences between this edition and the 2004 edition are the following:

(i) New fatigue provisions.
(ii) New welding provisions.
(iii) New Appendix (New Zealand-only) dealing with other steels.

Appendix H is for New Zealand only. Differences identified by the technical committee between the Standards referenced in Appendix H and Clause 2.2 were unable to be addressed in this revision so the Appendix allows for the existing practices in New Zealand to remain in place. Appendix J provides a commentary of the differences identified.

In line with Standards Australia policy, the words ‘shall’ and ‘may’ are used consistently throughout this Standard to indicate respectively, a mandatory provision and an acceptable or permissible alternative.

Statements expressed in mandatory terms in Notes to tables are deemed to be requirements of this Standard.

The terms ‘normative’ and ‘informative’ have been used in this Standard to define the application of the appendix to which they apply. A ‘normative’ appendix is an integral part of a Standard, whereas an ‘informative’ appendix is only for information and guidance.
CONTENTS

SECTION 1 SCOPE AND GENERAL

1.1 SCOPE	7
1.2 EXCLUSIONS	7
1.3 APPLICATION	7
1.4 NORMATIVE REFERENCES	8
1.5 NOTATION	9
1.6 MATTERS FOR RESOLUTION BEFORE DESIGN COMMENCES	9
1.7 WORKMANSHP	10
1.8 ADDITIONAL REQUIREMENTS--NEW ZEALAND ONLY	10

SECTION 2 MATERIALS

2.1 YIELD STRESS AND TENSILE STRENGTH USED IN DESIGN	27
2.2 STRUCTURAL STEEL	27
2.3 CONCRETE, REINFORCEMENT AND PRESTRESSING STEELS	28
2.4 FASTENERS	28
2.5 WELDS	28
2.6 WELDED STUD SHEAR CONNECTORS	29
2.7 STEEL CASTINGS	29
2.8 WROUGHT IRON	29
2.9 RIVETS	29
2.10 CAST IRON	29
2.11 DUCTILITY REQUIREMENTS	29

SECTION 3 GENERAL DESIGN REQUIREMENTS

3.1 GENERAL	32
3.2 DESIGN FOR ULTIMATE (STRENGTH) LIMIT STATE	32
3.3 DESIGN FOR SERVICEABILITY LIMIT STATE	34
3.4 DESIGN FOR STRENGTH AND SERVICEABILITY BY LOAD TESTING	35
3.5 AVOIDANCE OF BRITTLE FRACTURE AND LAMELLAR TEARING	35
3.6 FATIGUE	35
3.7 CORROSION	35
3.8 DESIGN FOR FIRE RESISTANCE	36
3.9 PARTICULAR DESIGN REQUIREMENTS—GENERAL	36
3.10 PARTICULAR DESIGN REQUIREMENTS—RAIL BRIDGES	36
3.11 DESIGN FOR EARTHQUAKE	38
3.12 RELIABILITY MANAGEMENT	39

SECTION 4 METHODS OF STRUCTURAL ANALYSIS

4.1 METHODS OF DETERMINING ACTION EFFECTS	40
4.2 ELASTIC ANALYSIS	40
4.3 MEMBER BUCKLING ANALYSIS	45
4.4 ANALYSIS OF COMPOSITE BEAMS, GIRDERS AND COLUMNS	48
4.5 ANALYSIS OF BOX GIRDER	51
4.6 STAGED CONSTRUCTION	52
4.7 CONNECTIONS	52
4.8 LONGITUDINAL SHEAR	54
4.9 SHRINKAGE AND DIFFERENTIAL TEMPERATURE EFFECTS	55
4.10 RIGOROUS STRUCTURAL ANALYSIS	56
SECTION 5 STEEL BEAMS
5.1 DESIGN FOR BENDING MOMENT ... 64
5.2 SECTION MOMENT CAPACITY FOR BENDING ABOUT A PRINCIPAL
 AXIS .. 70
5.3 MEMBER CAPACITY OF SEGMENTS WITH FULL LATERAL RESTRAINT 70
5.4 RESTRAINTS ... 72
5.5 CRITICAL FLANGE .. 75
5.6 MEMBER CAPACITY OF SEGMENTS WITHOUT FULL LATERAL
 RESTRAINT ... 76
5.7 BENDING IN A NON-PRINCIPAL PLANE .. 85
5.8 DESIGN OF WEBS ... 85
5.9 ARRANGEMENT OF WEBS ... 86
5.10 SHEAR CAPACITY OF WEBS ... 87
5.11 INTERACTION OF SHEAR AND BENDING .. 90
5.12 COMPRESSION BEARING ACTION ON THE EDGE OF A WEB 91
5.13 DESIGN OF LOADBEARING STIFFENERS ... 95
5.14 DESIGN OF INTERMEDIATE TRANSVERSE WEB STIFFENERS 97
5.15 DESIGN OF LONGITUDINAL WEB STIFFENERS 99

SECTION 6 COMPOSITE BEAMS
6.1 SCOPE OF SECTION .. 101
6.2 GENERAL REQUIREMENTS ... 101
6.3 DESIGN FOR BENDING MOMENT .. 103
6.4 SECTION MOMENT CAPACITY ... 104
6.5 BEAM MOMENT CAPACITY .. 105
6.6 VERTICAL SHEAR CAPACITY .. 106
6.7 INTERACTION OF SHEAR AND BENDING .. 106
6.8 LONGITUDINAL SHEAR ... 107

SECTION 7 BOX AND LONGITUDINALLY STIFFENED GIRDERS
7.1 GENERAL ... 117
7.2 BOX GIRDERS WITHOUT LONGITUDINAL STIFFENERS 117
7.3 FLANGES IN BEAMS WITH LONGITUDINAL STIFFENERS 117
7.4 WEBS IN BEAMS WITH LONGITUDINAL STIFFENERS 123
7.5 TRANSVERSE MEMBERS IN STIFFENED FLANGES 135
7.6 DIAPHRAGMS AT SUPPORTS .. 138
7.7 GEOMETRIC REQUIREMENTS FOR LONGITUDINAL STIFFENERS 160

SECTION 8 TRANSVERSE MEMBERS AND RESTRAINTS
8.1 GENERAL ... 165
8.2 DEFINITIONS .. 165
8.3 PARTICULAR REQUIREMENTS ... 165
8.4 DESIGN OF RESTRAINTS TO FLEXURAL MEMBERS 166
8.5 SEPARATORS AND DIAPHRAGMS .. 169
8.6 DESIGN OF RESTRAINTS TO COMPRESSION MEMBERS 169

SECTION 9 MEMBERS SUBJECT TO AXIAL TENSION
9.1 DESIGN FOR AXIAL TENSION .. 171
9.2 NOMINAL SECTION CAPACITY ... 171
9.3 TENSION MEMBERS WITH TWO OR MORE MAIN COMPONENTS 173
9.4 MEMBERS WITH PIN CONNECTIONS ... 174
SECTION 10 MEMBERS SUBJECT TO AXIAL COMPRESSION
10.1 DESIGN FOR AXIAL COMPRESSION ... 175
10.2 SECTION CAPACITY .. 175
10.3 NOMINAL MEMBER CAPACITY .. 177
10.4 LACED AND BATTENED COMPRESSION MEMBER 182
10.5 COMPRESSION MEMBERS BACK-TO-BACK ... 181
10.6 COMPOSITE COMPRESSION MEMBERS ... 185
10.7 DETAILING PROVISIONS—MINIMUM REINFORCEMENT 195
10.8 VERIFICATION OF COMPOSITE COLUMNS FOR SERVICEABILITY LIMIT STATES ... 196

SECTION 11 MEMBERS SUBJECT TO COMBINED ACTIONS
11.1 GENERAL .. 198
11.2 DESIGN ACTIONS .. 198
11.3 SECTION CAPACITY .. 198
11.4 MEMBER CAPACITY ... 200
11.5 CAPACITY OF COMPOSITE COMPRESSION MEMBERS 204

SECTION 12 CONNECTIONS
12.1 GENERAL .. 208
12.2 DEFINITIONS .. 208
12.3 PARTICULAR REQUIREMENTS FOR CONNECTIONS 209
12.4 DEDUCTIONS FOR FASTENER HOLES .. 210
12.5 DESIGN OF BOLTS, RIVETS AND PINS .. 212
12.6 DESIGN OF WELDS ... 218

SECTION 13 FATIGUE
13.1 SCOPE ... 230
13.2 EXCLUSIONS ... 230
13.3 DEFINITIONS .. 230
13.4 NOTATION .. 233
13.5 GENERAL REQUIREMENTS .. 234
13.6 ASSESSMENT METHODS .. 234
13.7 STRESSES FROM FATIGUE ACTIONS .. 236
13.8 CALCULATION OF STRESSES ... 237
13.9 CALCULATION OF STRESS RANGES ... 238
13.10 FATIGUE STRENGTH ... 242
13.11 FATIGUE VERIFICATION ... 247

SECTION 14 BRITTLE FRACTURE AND LAMELLAR TEARING
14.1 GENERAL .. 268
14.2 METHODS ... 268
14.3 NOTCH-DUCTILE RANGE METHOD .. 268
14.4 DESIGN SERVICE TEMPERATURE ... 268
14.5 MATERIAL SELECTION ... 270
14.6 FRACTURE ASSESSMENT .. 273
14.7 SELECTION OF MATERIALS FOR THE AVOIDANCE OF LAMELLAR TEARING ... 273

SECTION 15 TESTING OF STRUCTURES OR ELEMENTS
15.1 GENERAL .. 274
15.2 TESTING OF MEMBERS .. 274
15.3 PROOF TESTING .. 275
15.4 PROTOTYPE TESTING .. 275
APPENDICES

A ELASTIC RESISTANCE TO LATERAL BUCKLING .. 278
B STRENGTH OF STIFFENED WEB PANELS UNDER COMBINED ACTIONS .. 283
C SECOND ORDER ELASTIC ANALYSIS .. 285
D ECCENTRICALLY LOADED DOUBLE-BOLTED OR WELDED SINGLE
 ANGLES IN TRUSSES .. 286
E INTERACTION CURVES FOR COMPOSITE COLUMNS 288
F MODIFICATION OF EXISTING STRUCTURES .. 290
G CORROSION RATE MAPS .. 291
H REQUIREMENTS—STEEL OTHER THAN SPECIFIED IN SECTION 2 302
I FATIGUE .. 313
J GUIDANCE ON USING STEELS OTHER THAN STEELS SPECIFIED IN
 SECTION 2 ... 317
K STATISTICAL DATA ... 320
L GUIDANCE ON DETERMINATION OF THE CONSTRUCTION
 CATEGORY .. 322

BIBLIOGRAPHY ... 326
1.1 SCOPE
This Standard sets out minimum requirements for the design, fabrication and erection of the structural steelwork in bridges. Wrought and cast iron structures may be checked in accordance with this Standard, using the appropriate material properties and capacity reduction factors.

The Standard also includes requirements for the design of other steel components of bridges including steel piers, steel railings, sign structures, and structural interaction between steel and concrete composite members.

1.2 EXCLUSIONS
This Standard does not cover the steelwork of the following structures, members and materials:

(a) Bridges with orthotropic plate decks.
(b) Cold-formed members other than those complying with AS/NZS 1163.
(c) Steel members for which the value of yield stress (f_y) used in design exceeds 690 MPa.
(d) Steel elements, other than packers, less than 3 mm thick.

1.3 APPLICATION
The requirements for bridges, members and materials specified in Items (a) to (d) of Clause 1.2, and for new and unusual bridge types shall be designated by the relevant authority.

In the design of steel-concrete composite members, the general requirements of AS 5100.5 pertaining to the design of concrete shall apply, where relevant, in addition to the requirements of this Standard.

NOTE: In New Zealand, the concrete structures design may be designated by the relevant authority.

The design of structural elements using non-ferrous metals such as aluminium alloys is not covered in this Standard. Where such components are to carry calculated stress, the applicable specification to be used in their design shall be designated by the relevant authority.