New Zealand Standard

Concrete masonry buildings not requiring specific engineering design

Superseding NZS 4229:1999
COMMITTEE REPRESENTATION

This Standard was prepared under the supervision of the P 4229 Committee the Standards Council established under the Standards Act 1988.

The committee consisted of representatives of the following nominating organisations:

BRANZ
Cement and Concrete Association of New Zealand
Design Association of New Zealand
Institution of Professional Engineers New Zealand
Ministry of Business, Innovation and Employment – Building and Housing Group
University of Auckland

ACKNOWLEDGEMENT

Standards New Zealand gratefully acknowledges the contribution of time and expertise from all those involved in developing this Standard. Standards New Zealand also gratefully acknowledges the New Zealand Concrete Masonry Association for the figures provided for Appendix A.

COPYRIGHT

The copyright of this document is the property of the Standards Council. No part of this document may be reproduced by photocopying or by any other means without the prior written permission of the Chief Executive of Standards New Zealand, unless the circumstances are covered by Part 3 of the Copyright Act 1994.

Standards New Zealand will vigorously defend the copyright in this Standard. Every person who breaches Standards New Zealand’s copyright may be liable, under section 131(5) (a) of the Copyright Act 1994, to a fine not exceeding $10,000 for every infringing copy to which the offence relates, but not exceeding $150,000 for the same transaction, or to imprisonment for a term not exceeding 5 years. Those in breach under section 131(5) (b) of the Copyright Act 1994 may be liable to a fine not exceeding $150,000 or to imprisonment for a term not exceeding 5 years. If there has been a flagrant breach of copyright, Standards New Zealand may also seek additional damages from the infringing party, in addition to obtaining injunctive relief and an account of profits.

Published by Standards New Zealand, the trading arm of the Standards Council, Private Bag 2439, Wellington 6140. Telephone: (04) 498 5990; Fax: (04) 498 5994; Website: www.standards.co.nz.

AMENDMENTS

<table>
<thead>
<tr>
<th>No.</th>
<th>Date of issue</th>
<th>Description</th>
<th>Entered by, and date</th>
</tr>
</thead>
</table>
New Zealand Standard

Concrete masonry buildings not requiring specific engineering design
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Committee representation</td>
<td>IFC</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td>IFC</td>
</tr>
<tr>
<td>Copyright</td>
<td>IFC</td>
</tr>
<tr>
<td>Referenced documents</td>
<td>ix</td>
</tr>
<tr>
<td>Related documents</td>
<td>x</td>
</tr>
<tr>
<td>Latest revisions</td>
<td>xi</td>
</tr>
<tr>
<td>Review of Standards</td>
<td>xi</td>
</tr>
<tr>
<td>Outcome statement</td>
<td>xi</td>
</tr>
<tr>
<td>Foreword</td>
<td>xii</td>
</tr>
<tr>
<td>SCOPE AND INTERPRETATION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Scope</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Interpretation</td>
<td>6</td>
</tr>
<tr>
<td>1.3 Definitions</td>
<td>7</td>
</tr>
<tr>
<td>GENERAL</td>
<td>13</td>
</tr>
<tr>
<td>2.1 Materials</td>
<td>13</td>
</tr>
<tr>
<td>2.2 Workmanship, construction, and tolerances</td>
<td>13</td>
</tr>
<tr>
<td>2.3 Surface coatings</td>
<td>14</td>
</tr>
<tr>
<td>2.4 Maintenance</td>
<td>14</td>
</tr>
<tr>
<td>SITE REQUIREMENTS</td>
<td>15</td>
</tr>
<tr>
<td>3.1 Soil bearing capacity</td>
<td>15</td>
</tr>
<tr>
<td>3.2 Soil types</td>
<td>17</td>
</tr>
<tr>
<td>3.3 Test method for soil bearing capacity</td>
<td>18</td>
</tr>
<tr>
<td>3.4 Bearing</td>
<td>20</td>
</tr>
<tr>
<td>3.5 Site preparation</td>
<td>20</td>
</tr>
<tr>
<td>3.6 Water in subfloor spaces</td>
<td>20</td>
</tr>
<tr>
<td>3.7 Effects of tree roots on foundations</td>
<td>20</td>
</tr>
<tr>
<td>BRACING DEMAND</td>
<td>21</td>
</tr>
<tr>
<td>4.1 General</td>
<td>21</td>
</tr>
<tr>
<td>4.2 Earthquake zones</td>
<td>21</td>
</tr>
<tr>
<td>4.3 Calculations of bracing demand – Wind</td>
<td>24</td>
</tr>
<tr>
<td>4.4 Calculation of bracing demand – Earthquake</td>
<td>27</td>
</tr>
<tr>
<td>WALL BRACING CAPACITY</td>
<td>31</td>
</tr>
<tr>
<td>5.1 General</td>
<td>31</td>
</tr>
<tr>
<td>5.2 Bracing panels within structural walls</td>
<td>31</td>
</tr>
<tr>
<td>5.3 Reinforcement of bracing panels</td>
<td>32</td>
</tr>
<tr>
<td>5.4 Non-continuous walls</td>
<td>32</td>
</tr>
<tr>
<td>5.5 Masonry frames</td>
<td>32</td>
</tr>
</tbody>
</table>
6 FOOTINGS

6.1 General

6.2 Width of footings

6.3 Reinforced concrete footings

6.4 Reinforced masonry footings

6.5 Mass concrete subfootings

6.6 Reinforcement of footings

6.7 Vertical wall starter reinforcement

6.8 Footings for isolated transverse walls

7 FOUNDATION WALLS AND CONCRETE SLAB-ON-GROUND

7.1 Foundation walls

7.2 Slab-on-ground

7.3 Granular base

7.4 Damp-proof membrane

7.5 Bituminous sheet damp-proof membranes

7.6 Polyethylene (polythene) sheet damp-proof membranes

7.7 Rubber emulsion damp-proof membranes

7.8 Slab-on-ground construction

7.9 Bearing

7.10 Underfloor thermal insulation

7.11 Support of loadbearing internal walls

8 WALLS

8.1 General

8.2 Wall systems to resist vertical loads

8.3 Structural walls

8.4 Systems to resist horizontal forces

8.5 Bracing units and elements

8.6 Wall bracing elements in external walls not connected to a structural diaphragm

8.7 Wall bracing elements in internal walls on bracing lines

8.8 Structural diaphragms

9 DIAPHRAGMS

9.1 General

9.2 Roof and ceiling diaphragms

9.3 Timber floor diaphragms

9.4 Concrete diaphragms

9.5 Openings in diaphragms
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>BOND BEAMS</td>
<td>90</td>
</tr>
<tr>
<td>10.1</td>
<td>General</td>
<td>90</td>
</tr>
<tr>
<td>10.2</td>
<td>Bracing line support systems</td>
<td>90</td>
</tr>
<tr>
<td>10.3</td>
<td>Structural diaphragm systems</td>
<td>92</td>
</tr>
<tr>
<td>10.4</td>
<td>Intersection of bond beams</td>
<td>93</td>
</tr>
<tr>
<td>10.5</td>
<td>Gable-shaped walls</td>
<td>94</td>
</tr>
<tr>
<td>11</td>
<td>LINTELS AND COLUMNS</td>
<td>95</td>
</tr>
<tr>
<td>11.1</td>
<td>General</td>
<td>95</td>
</tr>
<tr>
<td>11.2</td>
<td>Size and reinforcement of lintels</td>
<td>95</td>
</tr>
<tr>
<td>11.3</td>
<td>Combination of lintels and bond beams</td>
<td>97</td>
</tr>
<tr>
<td>11.4</td>
<td>Wall columns</td>
<td>104</td>
</tr>
<tr>
<td>11.5</td>
<td>Isolated columns</td>
<td>106</td>
</tr>
<tr>
<td>12</td>
<td>SHRINKAGE</td>
<td>107</td>
</tr>
<tr>
<td>12.1</td>
<td>Shrinkage control joints</td>
<td>107</td>
</tr>
<tr>
<td>13</td>
<td>MASONRY VENEER WALL COVERING</td>
<td>109</td>
</tr>
</tbody>
</table>

Appendix

- **A** Masonry retaining walls (Normative) | 110
- **B** Cantilevered walls (Normative) | 117
- **D** Design examples and background information on derivation of design tables (Informative) | 127
- **E** Masonry veneer wall covering (Informative) | 147
Table

1.1 Importance levels of buildings ... 3
4.1 Earthquake zones ... 24
4.2 Wind bracing demand per lineal metre .. 25
4.3 Earthquake bracing demand ... 29
5.1 Bracing capacity of panels (bracing units) .. 33
6.1 Wall types and wall weights .. 39
6.2 Dimensions and reinforcement details for footings 40
8.1 Vertical load capacity of wall ... 65
8.2 Reinforcement for partially filled masonry structural walls 66
8.3 Reinforcement for solid-filled masonry structural walls 66
8.4 Maximum spacing for bracing lines .. 73
9.1 Nail fixing for ceiling and roof diaphragms .. 77
9.2 Nail fixing for floor diaphragm .. 83
10.1 Bond beam – Maximum spans ... 92
11.1 190 mm deep lintels: 15 Series ... 98
11.2 190 mm deep lintels: 20 Series ... 99
11.3 190 mm deep lintels: 25 Series ... 100
11.4 390 mm deep lintels: 15 Series ... 101
11.5 390 mm deep lintels: 20 Series ... 102
11.6 390 mm deep lintels: 25 Series ... 103
11.7 Capacity of wall columns ... 104
A1 Soil type design parameters .. 111
B1 Cast-in-situ concrete piles centrally reinforced to support cantilevered walls (solid or partially filled) ... 120
B2 Strip footing centrally placed under cantilevered walls (solid or partially filled) ... 121
B3 Strip footing for cantilevered walls (solid or partially filled) where footing is on one side of wall ... 122
B4 Strip footing consisting of floor slab on one side of a cantilevered wall 123
B5 Maximum spacing (mm) of D12 bar reinforcement for 190 mm cantilevered walls constructed of partially filled masonry (block density 1750 kg/m3) 124
B6 Maximum spacing (mm) of single D12 or D16 bar reinforcement for 190 mm cantilevered walls constructed of solid-filled masonry (block density 1750 kg/m3) .. 124
B7 Maximum spacing (mm) of D12 or D16 bar reinforcement for 190 mm cantilevered walls construction of partially filled masonry (block density 2200 kg/m3) .. 125
B8 Maximum spacing (mm) of single D12 or D16 bar reinforcement for 190 mm cantilevered walls constructed of solid-filled masonry (block density 2200 kg/m3) .. 125
D1 Design parameters ... 142
D2 Basic load data ... 142
E1 Protection for masonry veneer ties supporting masonry veneer using AS/NZS 2699.1 .. 149
E2 Protection for masonry veneer lintels supporting masonry veneer using AS/NZS 2699.3 .. 149
E3 Masonry veneer area/tie .. 150
E4 Tie duty schedule ... 150
E5 Veneer lintel – Steel angles ... 151

Figure
1.1 Building types covered by this Standard .. 4
3.1 Relationship of foundation to sloping ground surface 16
4.1 Earthquake zones ... 22
4.2 Directions of wind and braced walls .. 27
4.3 Building storeys .. 28
6.1 Roof weight contribution kN/m ... 38
6.2 Suspended floor weight contribution ... 40
6.3 Reinforced masonry footing ... 41
6.4 Mass concrete subfooting ... 43
6.5 Reinforcement of footings .. 45
6.6 Edge foundations ... 46
6.7 Stepped footing .. 49
6.8 Reinforcement at footing intersections ... 49
7.1 Minimum heights of finished concrete slab-on-ground floors above adjoining finished ground level .. 51
7.2 Permanent paving adjoining buildings with slab-on-ground floors 52
7.3 Construction of slabs-on-ground ... 54
7.4 Positioning of shrinkage control joints ... 61
7.5 Supplementary steel .. 61
7.6 Support of loadbearing internal walls .. 63
8.1 Reinforcement above and below openings ... 67
8.2 Bracing line support system ... 68
8.3 Structural diaphragm support systems .. 69
8.4 Two diaphragms braced by a common wall .. 74
8.5 One wall containing 30% of total bracing units ... 74
9.1 Diaphragm construction .. 77
9.2 Roof diaphragms ... 79
9.3 Sloping ceiling diaphragms – Sheet material on battened rafters 80
9.4 Horizontal ceiling diaphragms ... 82
9.5 Timber floor diaphragms connections .. 84
REFERENCED DOCUMENTS

Reference is made in this document to the following:

New Zealand Standards

- NZS 1170:----- Structural design actions
 - Part 5:2004 Earthquake actions – New Zealand
 - Part 5: Supplement 1: Earthquake actions – New Zealand Commentary 2004
- NZS 3101:2006 Concrete structures Standard
 - Parts 1 and 2
- NZS 3109:1997 Concrete construction
- NZS 3112:----- Methods of test for concrete
 - Part 1:1986 Tests relating to fresh concrete
 - Part 2:1986 Tests relating to the determination of strength of concrete
 - Part 4:1986 Tests relating to grout
- NZS 3604:2011 Timber-framed buildings
- NZS 4210:2001 Masonry construction: Materials and workmanship
- NZS 4230:2004 Design of reinforced concrete masonry structures
- NZS 4402:----- Methods of testing soils for civil engineering purposes
 - Test 2.2:1986 Soil classification tests – Test 2.2 Determination of the liquid limit
 - Test 2.6:1986 Soil classification tests – Test 2.6 Determination of the linear shrinkage
 - Test 6.5.2:1988 Soil strength tests – Determination of the penetration resistance of a soil – Test 6.5.2 Hand method using a dynamic cone penetrometer
- NZS 4404:2010 Land development and subdivision infrastructure
- NZS 4431:1989 Code of practice for earth fill for residential development

Joint Australian/New Zealand Standards

- AS/NZS 1170:----- Structural design actions
 - Part 0:2002 General principles
 - Part 1:2002 Permanent, imposed and other actions
 - Part 2:2011 Wind actions
 - Part 3:2003 Snow and ice actions
NZS 4229:2013

AS/NZS 2699:---- Built-in components for masonry construction
 Part 1:2000 Wall ties
 Part 3:2002 Lintels and shelf angles (durability requirements)
AS/NZS 4455:---- Masonry units, pavers, flags and segmental retaining wall units
 Part 1:2008 Masonry units
AS/NZS 4671:2001 Steel reinforcing materials

American Standard

ASTM E96/E96M-12 Standard test methods for water vapor transmission of materials

Other publications

New Zealand legislation

Local Government Act 2002

Resource Management Act 1991

Websites

Building and Housing Group, Ministry of Business, Innovation and Employment www.dbh.govt.nz

New Zealand Concrete Masonry Association Inc. www.nzcma.org.nz

New Zealand Legislation www.legislation.govt.nz

RELATED DOCUMENTS

See Appendix D for a list of related documents used to prepare this Standard.
LATEST REVISIONS

The users of this Standard should ensure that their copies of the above-mentioned New Zealand Standards are the latest revisions. Amendments to referenced New Zealand and Joint Australian/New Zealand Standards can be found on www.standards.co.nz.

REVIEW OF STANDARDS

Suggestions for improvement of this Standard are welcomed. They should be sent to the Chief Executive, Standards New Zealand, Private Bag 2439, Wellington 6140.

OUTCOME STATEMENT

NZS 4229:2013 Concrete masonry buildings not requiring specific engineering design sets a minimum standard for the design and construction of reinforced concrete masonry buildings. When applied by architects, designers, builders, engineers, apprentices, building consent authorities, and building industry regulators, NZS 4229 provides these users with a cost effective means of compliance and practical guidance for designing and building to meet New Zealand Building Code requirements, without the need for specific engineering design.

NZS 4229 provides prescribed methods for the design and construction of reinforced concrete masonry buildings up to 10 metres in height, including domestic dwellings and most other residential buildings, and some commercial buildings.

The use of NZS 4229 during design and building provides consumers with assurance that their home has been built to meet the legislative requirements of the New Zealand Building Code.
This 2013 limited revision has been brought about by the replacement of NZS 4203:1992 General structural design and design loadings for buildings with the AS/NZS 1170 Structural design actions Standard series with a consequent change to the applied actions on structures, particularly earthquake actions.

The earthquake zones have been aligned with those in NZS 3604:2011 Timber-framed buildings, introducing four zones instead of three. Earthquake actions may now be calculated specifically for a site’s subsoil classification. The earthquake actions have increased in some areas as a result of the change in earthquake demand and the greater spread in demand over the country as detailed in NZS 1170.5. An extra high wind zone has also been introduced to align with NZS 3604.

In addition, the durability provisions now align with current requirements by reference to the NZS 3604 requirements.

The opportunity has been taken to correct errors in the 1999 edition of the Standard, although a full detailed review of the document was not undertaken in 2013. Appendix B has been detailed to comply with the revised earthquake demands and the retaining walls in Appendix A have been aligned with the latest designs available in the New Zealand Concrete Masonry Association's New Zealand concrete masonry manual.

This limited revision also incorporates changes introduced to New Zealand Building Code compliance documents by the Ministry of Business, Innovation and Employment (previously the Department of Building and Housing) in 2011, which modified its referencing of NZS 3604:2011 and NZS 4229:1999. These changes include amendments to the definition of 'good ground' for the Canterbury earthquake region and new requirements for concrete slab floors and foundations. The Ministry has published guidance for designers in Canterbury that may inform design for locations other than the Canterbury earthquake region. Amendments can be considered to NZS 4229 or other documents when further information and evidence about liquefaction and lateral spread are available for use nationally.
New Zealand Standard

Concrete masonry buildings not requiring specific engineering design

1 SCOPE AND INTERPRETATION

1.1 Scope

1.1.1

This Standard sets out construction requirements for concrete masonry buildings not requiring specific engineering design within the limitations specified by 1.1.3. It is intended as a means of compliance with the following requirements of the New Zealand Building Code (NZBC):

(a) Clause B1 Structure

Masonry constructed in accordance with this Standard and NZS 4210 will meet the requirements of B1.3.1, B1.3.2, and B1.3.4 for loads from B1.3.3(a), (b), (d), (f), (h), and (j), that is for loads arising from gravity, earth pressure, earthquake, wind, and human impact. This Standard covers masonry constructed to Observation Type B as defined in NZS 4230. Appendix A gives details of concrete masonry walls that are retaining soil. Appendix B gives details of free-standing cantilevered concrete masonry walls;

(b) Clause B2 Durability

Masonry constructed in accordance with this Standard will be durable for at least 50 years and will therefore meet B2.3.1(a) of the New Zealand Building Code;

(c) Clause E2 External Moisture

Construction in accordance with this Standard will ensure against damage to building components or dampness in the building as a result of external moisture entering through the masonry walls or the concrete slab-on-ground. This Standard ensures compliance with E2.3.2 and E2.3.3 of the New Zealand Building Code for walls and floors only. This Standard is not a complete solution to Clause E2 as it does not contain provisions for the other elements of the building envelope such as roofing, exterior joinery, and flashings.

Where this Standard has provisions that are in non-specific or unquantified terms (such as where provisions are required to be appropriate, adequate, suitable, and the like), then these do not form part of the means of compliance with the New Zealand Building Code and shall be to the approval of the building consent authority.
NZS 4229:2013 Concrete masonry buildings not requiring specific engineering design

This is a free sample only.

Purchase the full publication here:
https://shop.standards.govt.nz/catalog/4229%3A2013%28NZS%29/view

Or contact Standards New Zealand using one of the following methods.

Freephone: 0800 782 632 (New Zealand)
Phone: +64 3 943 4259
Email: enquiries@standards.govt.nz